Mehmet Ahsen

Mehmet Ahsen

Assistant Professor of Business Administration

  • Email

Contact

4024 Business Instructional Facility

515 Gregory Drive

Champaign, IL 61820

217-300-7186

ahsen@illinois.edu

Google Scholar

Update Your Profile Refresh Your Profile

Listings

Educational Background

  • Ph.D., Biomedical Engineering, University of Texas at Dallas at Dallas, 2015
  • M.S., Electrical and Electronics Engineering, Bilkent University, 2011
  • B.S., Electrical and Electronics Engineering, Middle East Technical University, 2009
  • B.S., Mathematics, Middle East Technical University, 2009

Positions Held

  • Assistant Professor of Business Administration, Business Administration, University of Illinois at Urbana-Champaign, 2019 to present

Recent Publications

  • Ahsen, M., & Vidyasagar, M. (2019). An approach to one-bit compressed sensing based on probably approximately correct learning theory. The Journal of Machine Learning Research, JMLR. org, 20 (1), 408--430.
  • Choobdar, S., Ahsen, M., Crawford, J., Tomasoni, M., Fang, T., Lamparter, D., Lin, J., Hescott, B., Hu, X., Mercer, J., & others, . (2019). Assessment of network module identification across complex diseases. Nature Methods, Nature Publishing Group, 16 (9), 843--852.
  • Davis, S., Button-Simons, K., Bensellak, T., Ahsen, M., Checkley, L., Foster, G., Su, X., Moussa, A., Mapiye, D., Khoo, S., & others, . (2019). Leveraging crowdsourcing to accelerate global health solutions. Nature biotechnology, Nature Publishing Group, 37 (8), 848--850.
  • Kerns, S., Fachal, L., Dorling, L., Barnett, G., Baran, A., Peterson, D., Hollenberg, M., Hao, K., Narzo, A., Ahsen, M., & others, . (2019). Radiogenomics Consortium Genome-Wide Association Study Meta-analysis of Late Toxicity after Prostate Cancer Radiotherapy.
  • Fourati, S., Talla, A., Mahmoudian, M., Burkhart, J., Klen, R., Henao, R., Yu, T., Ayd\in, Zafer, ., Yeung, K., Ahsen, M., & others, . (2018). A crowdsourced analysis to identify ab initio molecular signatures predictive of susceptibility to viral infection. Nature communications, Nature Publishing Group, 9 (1), 4418.
  • Pandey, G., Pandey, O., Rogers, A., Ahsen, M., Hoffman, G., Raby, B., Weiss, S., Schadt, E., & Bunyavanich, S. (2018). A nasal brush-based classifier of asthma identified by machine learning analysis of nasal RNA sequence data. Scientific reports, Nature Publishing Group, 8 (1), 8826.
  • Smith, J., Wunsch, B., Dogra, N., Ahsen, M., Lee, K., Yadav, K., Weil, R., Pereira, M., Patel, J., Duch, E., & others, . (2018). Integrated nanoscale deterministic lateral displacement arrays for separation of extracellular vesicles from clinically-relevant volumes of biological samples. Lab on a Chip, Royal Society of Chemistry, 18 (24), 3913--3925.

Other Publications

Articles

  • Ahsen, M., Ayvaci, M., & Raghunathan, S. (2018). When algorithmic predictions use human-generated data: A bias-aware classification algorithm for breast cancer diagnosis. Information Systems Research, INFORMS, 30 (1), 97--116.
  • Ayvaci, M., Alagoz, O., Ahsen, M., & Burnside, E. (2018). Preference-Sensitive Management of Post-Mammography Decisions in Breast Cancer Diagnosis. Production and Operations Management, 27 (12), 2313--2338.
  • Choobdar, S., Ahsen, M., Crawford, J., Tomasoni, M., Lamparter, D., Lin, J., Hescott, B., Hu, X., Mercer, J., Natoli, T., & others, . (2018). Open community challenge reveals molecular network modules with key roles in diseases.
  • Ahsen, M., & Vidyasagar, M. (2017). Error bounds for compressed sensing algorithms with group sparsity: A unified approach. Applied and Computational Harmonic Analysis, Academic Press, 43 (2), 212--232.
  • Ahsen, M., Boren, T., Singh, N., Misganaw, B., Mutch, D., Moore, K., Backes, F., McCourt, C., Lea, J., Miller, D., & others, . (2017). Sparse feature selection for classification and prediction of metastasis in endometrial cancer. BMC genomics, BioMed Central, 18 (3), 233.
  • Ahsen, M., Challapalli, N., & Vidyasagar, M. (2017). Two new approaches to compressed sensing exhibiting both robust sparse recovery and the grouping effect. Journal of Machine Learning Research, 18 (54), 1--24.
  • Ayvaci, M., Ahsen, M., Raghunathan, S., & Gharibi, Z. (2017). Timing the Use of Breast Cancer Risk Information in Biopsy Decision-Making. Production and Operations Management, 26 (7), 1333--1358.
  • Ahsen, M., \"Ozbay, Hitay, ., & Niculescu, S. (2016). Analysis of a gene regulatory network model with time delay using the secant condition. IEEE life sciences letters, IEEE, 2 (2), 5--8.
  • Ahsen, M., \"Ozbay, Hitay, ., & Niculescu, S. (2015). A secant condition for cyclic systems with time delays and its application to gene regulatory networks. IFAC-PapersOnLine, Elsevier, 48 (12), 171--176.
  • Misganaw, B., Ahsen, M., Singh, N., Baggerly, K., Unruh, A., White, M., & Vidyasagar, M. (2015). Optimized Prediction of Extreme Treatment Outcomes in Ovarian Cancer. Cancer Informatics, 14 45--55.
  • Abate, A., Abburi, T., Abdessameud, A., Adetola, V., Aduba, C., Agaev, R., Aguiar, A., Ahmed, N., Ahn, H., Ahsen, M., & others, . (2014). 2014 Index IEEE Transactions on Automatic Control Vol. 59. IEEE Transactions on Automatic Control, 59 (12), 3381.
  • Ahsen, M., \"Ozbay, H, ., & Niculescu, S. (2014). On the analysis of a dynamical model representing gene regulatory networks under negative feedback. International Journal of Robust and Nonlinear Control, 24 (11), 1609--1627.
  • Ahsen, M., & Vidyasagar, M. (2013). Mixing coefficients between discrete and real random variables: Computation and properties. IEEE Transactions on Automatic Control, IEEE, 59 (1), 34--47.
  • Ahsen, M., \"Ozbay, Hitay, ., & Niculescu, S. (2012). Stability analysis of a dynamical model representing gene regulatory networks. IFAC Proceedings Volumes (IFAC-PapersOnline), 10 (PART 1), 191--196.
  • Singh, N., Ahsen, M., Mankala, S., Kim, H., White, M., & Vidyasagar, M. (2012). Reverse engineering gene interaction networks using the phi-mixing coefficient. arXiv preprint arXiv:1208.4066.

Book Chapters

  • Ahsen, M., \"Ozbay, Hitay, ., & Niculescu, S. (2017). Stability and Robustness Analysis of a Class of Cyclic Biological Systems. Time Delay Systems ( pp. 155--168). Springer, Cham.
  • Ahsen, M., \"Ozbay, Hitay, ., & Niculescu, S. (2015). Analysis of deterministic cyclic gene regulatory network models with delays. SpringerBriefs in Control, Automation and Robotics ( pp. 1--92). Springer Publishing Company.
  • Ahsen, M., \"Ozbay, Hitay, ., & Niculescu, S. (2015). Basic Tools from Systems and Control Theory. Analysis of Deterministic Cyclic Gene Regulatory Network Models with Delays ( pp. 13--23). Birkh\"auser, Cham.
  • Ahsen, M., \"Ozbay, Hitay, ., & Niculescu, S. (2015). Deterministic ODE-Based Model with Time Delay. Analysis of Deterministic Cyclic Gene Regulatory Network Models with Delays ( pp. 43--51). Birkh\"auser, Cham.
  • Ahsen, M., \"Ozbay, Hitay, ., & Niculescu, S. (2015). Functions with Negative Schwarzian Derivatives. Analysis of Deterministic Cyclic Gene Regulatory Network Models with Delays ( pp. 25--42). Birkh\"auser, Cham.
  • Ahsen, M., \"Ozbay, Hitay, ., & Niculescu, S. (2015). Gene Regulatory Networks Under Positive Feedback. Analysis of Deterministic Cyclic Gene Regulatory Network Models with Delays ( pp. 73--85). Birkh\"auser, Cham.
  • Ahsen, M., \"Ozbay, Hitay, ., & Niculescu, S. (2015). Introduction. Analysis of Deterministic Cyclic Gene Regulatory Network Models with Delays ( pp. 1--11). Springer International Publishing.
  • Ahsen, M., \"Ozbay, Hitay, ., & Niculescu, S. (2015). Summary and Concluding Remarks. Analysis of Deterministic Cyclic Gene Regulatory Network Models with Delays ( pp. 87--88). Birkh\"auser, Cham.

Conference Proceedings

  • Basu, S., Subramanyam, R., & Ahsen, M. (2019). Is a megapixel worth a few thousand words? An Empirical Assessment of Image Sentiments on Philanthropic Crowdfunding Success. Conference on the Digital Economy (CODE) 2019.
  • Craig, A., Villacorta-Martin, C., Labgaa, I., Ahsen, M., Martins-Filho, S., D'AVOLA, D., Stueck, A., Ward, S., Fiel, M., Gunasekaran, G., & others, . (2017). A potential role of cancer testis antigens in hepatocellular carcinoma progression. Hepatology.
  • Challapalli, N., Ahsen, M., & Vidyasagar, M. (2016). Modelling drug response and resistance in cancer: Opportunities and challenges. 2016 IEEE 55th Conference on Decision and Control (CDC) ( pp. 2488--2493).
  • Craig, A., Ahsen, M., Villacorta-Martin, C., Chen, X., Labgaa, I., Stueck, A., D'Avola, D., Ward, S., Fiel, M., Gunasekaran, G., & others, . (2016). Multi-regional integrative genomic analysis reveals intra-tumor heterogeneity in a subset of hepatocellular carcinoma. Hepatology ( vol. 64, pp. 267A--268A).
  • Torlak, F., Ayvaci, M., Ahsen, M., Arce, C., Vazquez, M., & Tanriover, B. (2016). Estimating waiting time for deceased donor renal transplantion in the era of new kidney allocation system. Transplantation proceedings ( 6 ed vol. 48, pp. 1916--1919).
  • Ahsen, M., & Vidyasagar, M. (2015). A PAC learning approach to one-bit compressed sensing. 2015 American Control Conference (ACC) ( pp. 4228--4230).
  • Ahsen, M., & Vidyasagar, M. (2015). An approach to one-bit compressed sensing based on probably approximately correct learning theory. 2015 54th IEEE Conference on Decision and Control (CDC) ( pp. 7377--7379).
  • Ahsen, M., & Vidyasagar, M. (2014). Near-ideal behavior of compressed sensing algorithms. 53rd IEEE Conference on Decision and Control ( pp. 6354--6357).
  • Bulut, E., Ahsen, M., & Szymanski, B. (2014). Opportunistic wireless charging for mobile social and sensor networks. 2014 IEEE Globecom Workshops (GC Wkshps) ( pp. 207--212).
  • Ahsen, M., & Vidyasagar, M. (2013). On the computation of mixing coefficients between discrete-valued random variables. 2013 9th Asian Control Conference (ASCC) ( pp. 1--5).
  • Ahsen, M., Singh, N., Boren, T., Vidyasagar, M., & White, M. (2012). A new feature selection algorithm for two-class classification problems and application to endometrial cancer. 2012 IEEE 51st IEEE conference on decision and control (CDC) ( pp. 2976--2982).
  • Singh, N., Ahsen, M., Mankala, S., Vidyasagar, M., & White, M. (2012). A novel application of mixing coefficients for reverse-engineering gene interaction networks. 2012 50th Annual Allerton Conference on Communication, Control, and Computing (Allerton) ( pp. 1461--1466).
  • Singh, N., Ahsen, M., Mankala, S., Vidyasagar, M., & White, M. (2012). Inferring weighted and directed gene interaction networks from gene expression data using the phi-mixing coefficient. Proceedings 2012 IEEE International Workshop on Genomic Signal Processing and Statistics (GENSIPS) ( pp. 168--171).

Other Publications

  • Losic, B., Craig, A., Martins-Filho, S., Villacorta-Martin, C., Akers, N., Chen, X., Ahsen, M., Labgaa, I., D'Avola, D., Lira, S., & others, . (2018). Deciphering the impact of immune editing on liver cancer clonal evolution using immunogenomics. AACR.

Current Courses

  • Business Analytics II (BADM 211) This course builds on the foundation from the Business Analytics I (BADM 210), synthesizes concepts through hands-on application and project-based learning. Focuses on data acquisition, organization, analysis and visualization in a business setting. Expanding on the use of statistics in generating basic inferences to predictive modeling Identify opportunities for improving business decisions using data, conduct relevant analysis of the gathered and cleaned data, and finally, interpret and present analysis outcomes to decision makers. Using statistical tools and software applications to identify business problems, acquire relevant data, and generate analytic solutions using advanced analytics techniques and tools for generating insights. Introduces the students to analyzing, learning, and prediction using advanced analytics techniques and tools for generating business insights. This course will provide a practical introduction to various techniques regarding clustering, text mining, classification and decision trees, and time series analysis. Finally, the course will introduce advanced and emerging topics in predictive analytics.

Contact

4024 Business Instructional Facility

515 Gregory Drive

Champaign, IL 61820

217-300-7186

ahsen@illinois.edu

Google Scholar

Update Your Profile Refresh Your Profile