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Rational Momentum Effects
TIMOTHY C. JOHNSON*

ABSTRACT

Momentum effects in stock returns need not imply investor irrationality, hetero-
geneous information, or market frictions. A simple, single-firm model with a stan-
dard pricing kernel can produce such effects when expected dividend growth rates
vary over time. An enhanced model, under which persistent growth rate shocks
occur episodically, can match many of the features documented by the empirical
research. The same basic mechanism could potentially account for underreaction
anomalies in general.

THERE WOULD APPEAR TO BE FEW more flagrant affronts to the idea of rational,
efficient markets than the existence of large excess returns to simple mo-
mentum strategies in the stock market. So naturally do these profits sug-
gest systematic underreaction by the market, and so unpromising seems the
attempt to associate the rewards with risk factors, that asset pricing theo-
rists have mostly seen the task as simply one of deciding which sort of in-
vestor irrationality is at work.!

This article suggests that the case for rational momentum effects is not
hopeless, however. In fact, a simple, standard model of firm cash-flows dis-
counted by an ordinary pricing kernel can deliver a strong positive correla-
tion between past realized returns and current expected returns. The
framework is simplified and ignores many features crucial for valuing real
firms. The point is just to call attention to a direct, plausible, and rational
mechanism that may contribute to this puzzling phenomenon.

The key to the model is stochastic expected growth rates. By their nature,
such growth rates affect returns in a highly nonlinear way, and the dynam-
ics they imply differ qualitatively from those of familiar linear factor models.

Specifically, the curvature with respect to growth rates of equity prices is
extreme: Their log is convex. This property means that growth rate risk
rises with growth rates. Assuming that exposure to this risk carries a pos-
itive price, expected returns then rise with growth rates. Other things equal,
firms that have recently had large positive price moves are more likely to
have had positive growth rate shocks than other firms, with negative growth
shocks more likely among poor performers. Hence, a momentum sort will

* London Business School. I am indebted to the referee for several helpful comments.

1 The original momentum findings are in Jegadeesh (1990) and Lehmann (1990). Behavioral
explanations appear in Barberis, Shleifer, and Vishny (1998), Daniel, Hirshleifer, and Subrah-
manyam (1998), and Hong and Stein (1999).
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tend to sort firms by recent growth rate changes. In the absence of infor-
mation about starting growth rates, sorting by changes will thus also tend
to sort according to growth rate levels, and hence by end-of-period expected
return.

When it comes to mimicking actual empirical results, the basic model runs
into some problems. Most noticeably, to achieve large effects, growth rate
shocks must decay quite slowly. But this persistence implies risk premia—
and the associated risks—will also be persistent. By contrast, excess returns
to portfolios formed according to momentum vanish for holding periods be-
yond one year. Moreover, volatility differences between high and low mo-
mentum portfolios are not large in postformation periods, suggesting that
risk changes too are transitory.

I address these and other shortcomings of the original model with a nat-
ural extension allowing shocks to growth rates to be episodic. More pre-
cisely, I envision a two-regime process in which persistent growth shocks
occur only in the more infrequent, short-lived state. This introduces a char-
acteristic time scale beyond which effects will be undetectable. The switch-
ing model can also explain the curious fact that neither short nor long portfolio
formation periods capture changes in subsequent expected returns.

While the enhanced model sacrifices the tractability of the original (and
no closed-form results are available), its premise is not artificial. The intu-
ition is simply that persistent growth rate shocks represent major changes
in business conditions, like those associated with fundamental technological
innovation. Such innovations do tend to be rare and episodic. Moreover, tech-
nological shocks are likely to be common within sectors, which might ac-
count for the industry component of momentum profits reported in Moskowitz
and Grinblatt (1999).

I do not, however, take the analysis to the multifirm level. Nor are general
equilibrium effects considered. Furthermore, no strong claim is made as to
the robustness of the results. The aim is merely to show that momentum
effects are not intrinsically at odds with rational behavior.2

The paper contributes to the effort to understand the cross section of ex-
pected returns in terms of the time-varying risk characteristics of individual
firms. The role of changing capital structure (leverage effects) in altering
expected returns on equity was recognized as early as Merton (1974). How-
ever, this line did not prove particularly fruitful in accounting for asset pric-
ing anomalies. Recent work by Berk, Green, and Naik (1999) demonstrates
that a rich variety of return patterns, including momentum effects, can re-
sult from the variation of exposures over the life-cycle of a firm’s endog-
enously chosen projects. I complement this line of research by pointing out a
more direct channel from cash flows to momentum in returns. The model is

2 Conrad and Kaul (1998) also suggest a nonbehavioral mechanism, namely, that momentum
sorts simply select stocks according to their unconditional expected returns. This does not seem
to work empirically, however, mainly because stocks selected this way do not realize persis-
tently different returns. See Grundy and Martin (2001) and Jegadeesh and Titman (2001).
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sufficiently well developed that it offers precise quantitative predictions that
can be compared in detail to the empirical evidence.

The outline of the paper is as follows. Section I presents the basic setup.
Theoretical results on the existence of momentum effects are established,
and numerical examples presented. Section II develops the regime-switching
extension and illustrates its consequences. Simulations are used to demon-
strate the ability of the model to produce realistic effects. The final section
summarizes the project and highlights some areas for empirical investigation.

I. The Model

The setting used throughout the paper is a standard, continuous-time econ-
omy, with full rationality and complete information. The assumptions are as
follows:

¢ The economy is characterized by a state-price density process A,, which
evolves as a geometric Brownian motion

dA
7(5:—wdt+omdﬂﬁm, (1)

t

where r and o, are fixed constants. This assumption is tantamount to
stipulating that assets are priced by a representative agent for whom A,
is the marginal utility process.

¢ The equity is an unlevered claim to a perpetual, nonnegative cash-flow
process D, with a random, stationary growth rate.

— = u,dt + opd WP 2)

dp, = k(g — p,)dt +sdW,* (3)

Here op, , i, and s are constant, as are the three correlations between
the Brownian motions, denoted p,p, pa,, and pp,. Note that positive
covariation with A is desirable in a security for offsetting fluctuations
in marginal utility. The market price of D and u risk are then —p,po,
and —p,,0,, respectively.

Pricing the equity claim is straightforward under these assumptions. The
solution was recently derived by Brennan and Xia (2001), who give the re-
sults summarized in the following proposition.

ProrosiTiON 1: (Brennan and Xia, (2001)) Let P = P(D,u) be the price of a
claim to the dividend stream D. Then,
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(a) A necessary and sufficient condition for P to be finite is

L=~ 1+ (0ppp, + 0xpaL)S/K + Tpopprp + 87/(2%) < 0.
(b) If {; < 0, then P(D,n) = D,-U(u) and
U(M) — e((#/K)—zo)fooe{§1y+(zz—(M/K))e”‘y+{32’2"y}dy

0

where

"
2o = — — 3¢5
M*
zg =~ — 4,

b5 = 4,3

*

"= B+ (0ppp, + Oxpa,) S/,

To study momentum, the two key processes are the cumulative excess re-
turns accruing to the holder of a unit investment in the stock (from some
specified starting date), and the instantaneous expected excess returns, which
is just the drift of the first quantity. I label these processes CER, and EER,.
The latter is given by the risk premia associated with the exposures of the
equity, which is given by It6’s lemma. Hence,

U/
EER; = —pAp0r0p = pPru0r 77 8-

U
Then, the dynamics of the cumulative excess return process are

dP, D
dCER, = B —rdt+ th

t

(D) v’ (n)
= EER, dt + opdW,” + - sdW".

Clearly the process U'/U = U'(u,)/U(u,), the derivative of the log price—
dividend ratio, is central to the evolution of the system. While its explicit
form is not very revealing, the characteristic behavior of the system may be
seen with the help of the following lemma.
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LeEMMA 1: Let U(x) be as defined in (b) of Proposition 1 and assume the con-
dition in (a) is satisfied.? Then, for all x, U'(x)/U(x) is a positive, increasing
function.

Note: All proofs are given in the appendix.

The lemma establishes the property mentioned in the introduction: that
growth rate risk (1/P-0P/du oc U'/U) rises with growth rates, regardless of
the values of the parameters chosen. Mathematically, this means that the
sensitivity of the pricing function to this state variable is stronger than ex-
ponential. Economically, such extreme sensitivity can lead to purely rational
price paths that display bubblelike characteristics. For that reason, this class
of models deserves careful scrutiny by those inclined to interpret such be-
havior as evidence of expectational cascades, irrationality, or chaos. Nothing
like that needs to be involved.

As described above, if growth rate risk has a positive price, then higher
growth rates must entail higher expected returns. And momentum effects
then follow because positive (negative) cumulative returns typically imply ex
post that recent growth rate shocks have been positive (negative). To verify
the intuition of this simple conditioning argument, fix a time horizon, ¢, and
consider how total excess returns from ¢ (today) to ¢ will covary with the
expected excess return after €.

ProrosiTiON 2: Let F, be the time t information set. Then, assuming pp, = 0
and p,, <0,

E[(CER,., — E[CER,.(|%])-(EER,,, — E[EER,, | % ]| F]> 0.

The conclusion of the proposition just tells us that, given large returns to
€, we would indeed expect to see larger subsequent returns. The two corre-
lation restrictions are sufficient but far from necessary, as can be seen from
the proof. The requirement p;,, = 0 ensures that growth rate increases are
unambiguously “good news” and will, in general, coincide with increasing
stock prices. But a negative correlation does not rule this out if the sensi-
tivity to growth rates outweighs the sensitivity to dividends, which occurs
for many natural parameter choices. On the other hand, the requirement
pan < 0, which ensures that growth rate risk has a positive price, is harder
to relax.t Still, it can be the case that a countercyclical firm (whose growth
rate tends to increase in recessions, say) still exhibits momentum if also
Ppu < 0.

The exact covariance function whose sign the proposition gives is a func-
tion of the starting growth rate, u,, and is not available in closed form.
However, it may be found by integrating forward the expected instantaneous

8 The latter will be assumed implicitly in the remainder of the section.

4 Positive covariance of consumption with growth rates (hence negative covariance of u with
marginal utility) holding dividends fixed is a standard result for an endowment economy with
an elastically supplied riskless storage technology.
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Figure 1. Correlations: past cumulative return and current expected return. The fig-
ure shows the correlation of realized returns over different horizons with the instantaneous
expected excess return at the end of that period. Three cases are shown. The top case (squares)
has p,, = —0.5, p,p = —0.5, pp,, = +0.5, and o = 0.2. The middle case (circles) has p,,, = —0.5,
pap = —0.5, pp,, = —0.5, and oy = 0.1. The bottom case (diamonds) has p,, = +0.5, p,p = —0.5,
pp,. = —0.5, and o, = 0.4. All cases use r = 0.05, o, = 0.40, s = 0.03, k = 0.09. The vertical bars
depict the spread implied by letting the time-zero growth rate range over +3 times its station-
ary standard deviation.

covariances from ¢ to ¢t + €. These expectations can be readily calculated
from the Kolmogorov forward equations, since their time ¢ values are known
for all values of u,.

Slightly better, we may standardize these covariances and turn them into
the correlation function,

t+¢€
f cov,(CER,,.,EER, ;) du
t

t+e 1/2 t+¢ 1/2
<f Vart(CERqu()du) (f vart(EERuH)du>
t t

and compute all the moments in the same manner.

Figure 1 plots I'(€) for time horizons out to four years for some different
parameter configurations. (The vertical bars in the figure delimit the cor-
relations for values of the starting growth rate of +3 times its stationary
standard deviation.) The highest values correspond to a “normal” firm, which
satisfies the conditions of the proposition. Here the correlation is nearly one
for all time horizons. The values below these correspond to the same param-
eter configuration, but with pp,, = —0.5, instead of +0.5. These correlations
too are large and positive, illustrating the secondary importance of that

ri;u,) =

K
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parameter. Finally, the bottom values correspond to a “countercyclical” firm,
as described above. These values again are positive, though small, except for
very low values of p,. Apparently momentum effects, as measured by this
statistic, are a robust occurrence. In fact, it is not easy to generate antimo-
mentum configurations that are at all realistic and also large, without vio-
lating the regularity condition (a) in Proposition 1.

For comparison with empirical work, and to gauge the magnitude of the
theoretical effect, one would like to know the exact relationship between a
given observed return and the subsequent expected return, as in

0(.,¢) = E(EER,|CER, = ()

(where the initial time is now being taken to be zero). To be clear, the con-
ditioning information here is only the realized excess return, and not the
subsequent path of the growth rate.> Were u, known, EER, would be deter-
mined. While the model envisions u being observable, it is not readily avail-
able to econometricians. So, in the empirical literature, momentum is nearly
always analyzed by tabulating subsequent returns for portfolios formed on
the basis of cumulative returns from 0 to €. More generally, those sub-
sequent returns can be measured at varying horizons 7. Then, in terms of
the model, one would want to compare these to the theoretical function of
three parameters:

+7
®(1,6,7) = E < f EER, du|CER, = L> - E(CER,,, — CER,|CER, = ).
€

The functions ©® and ®, though not available analytically, can be computed
by Monte Carlo techniques. In Table I, I present these for some chosen pa-
rameter configurations.

First, the table shows the expected excess return following a one-year pe-
riod, conditioned on 10 possible return intervals. The intervals were chosen
to match typical intervals used by studies in forming portfolios. Specifically,
I used the average of the performance decile breakpoints for NYSE-listed
stocks from 1977 to 1992.6 For example, the range labeled 11 would, on av-
erage, have put the stock in the bottom 10 percent of all firms. (The exact
breakpoints are given in the table caption.) The second panel shows the
parameters used in the different cases, along with some statistics describing
the stock price process they imply.”?

5 Formally, the right side is the derivative of the regular conditional measure E(EER,|CER, < ¢).
If the initial growth rate is also taken as a parameter, O(i,u,;¢) may be defined likewise.

8 This is the period used in Chan, Jegadeesh, and Lakonishok (1996). They report average
six-month returns by decile. I fit a normal distribution to these, scaled that by the square root
of my formation period (one year in the table), and calculated decile breaks from that.

7 There is no claim to generality here. The cases were chosen to show the potential of the
model.
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Table I

Theoretical Momentum Effects

The first panel shows the instantaneous expected excess return (continuously compounded an-
nualized percentage) under four different sets of parameters, subsequent to a year in which the
cumulative return has fallen into 1 of the 10 intervals labeled I1 to I10. The return intervals
are defined by the breakpoints (—19.53, —7.69, 0.58, 7.70, 14.30, 20.90, 28.03, 36.31, 47.85). I1
corresponds to returns below —19.53 percent, 12 to returns between —19.53 percent and —7.69
percent, and so on up to returns over 47.85 percent in 110. The values are calculated by Monte
Carlo simulation of the model of Section I. The second panel lists the parameter settings for the
cases. All cases put r = 0.05, o, = 0.40, & = py = 0.00. The last three columns show the initial
risk premium, volatility, and price—dividend ratio for the stock that are implied by the settings.
The risk premium and volatility are annualized percentages.

Panel A: Expected Return as a Function of Realized Return

Case I1 12 I3 I4 15 16 17 18 19 110
A 13.83 13.86 13.86 13.86 13.87 13.87 13.87 13.88 13.89 13.90
B 10.79  11.30 11.43  11.52 11.60 11.68 11.77 11.83 11.93 12.26
C 9.23 9.98 10.28 10.49 10.72 1093 1112 1135 11.63 12.39
D 9.87 11.06 11.64 12.05 12.37 12.77  13.12 13.48 14.01 1546
E 9.564 10.83 11.38 11.74 12.16 12,55 12.85 13.27 13.79 15.38
F 8.60 9.78 10.48 11.00 11.56 12.09 12.63 13.21 14.02 16.14

Panel B: Parameter Settings

Ip S K PDp PAD Pap EER, VOL, U,
A 0.10 0.60 1.00 0.00 -050 -0.50 13.9 60.1 86.2
B 0.10 0.06 0.10 0.00 -050 -0.50 11.7 49.8 28.8
C 0.10 0.04 0.06 0.00 -0.60 —0.60 10.8 36.4 14.0
D 0.08 0.03 0.04 0.00 -0.70 -0.70 12.6 37.8 14.5
E 0.10 0.03 0.04 020 -0.20 -0.80 12.3 39.3 15.4
F 0.03 0.035 0.04 0.10 -040 -0.95 11.8 30.2 11.1

For these plausible cases, a strong and monotonic relationship between
past return and future expected return is shown clearly in the table, with
the magnitudes (given in annualized percentage) being economically large.
The empirical effect, as measured by the average difference between post-
formation returns of top and bottom intervals, is larger still: typically around
8-12 percent per year for six-month holding periods (Jegadeesh and Titman
(1993), Rouwenhorst (1998)) in the postwar period. Matching this, while obey-
ing the integrability condition of Proposition 1, appears to be unachievable.
But when u shocks are sufficiently persistent and growth rates are highly
correlated with marginal utility, over half of this can be accounted for.

Some care is required in making comparisons between the table, which
shows the expected return for a single firm conditioned on its own perfor-
mance, and the results of portfolio studies. For one thing, the conditioning
information embodied in a performance sort is about relative returns. Being
in the 10th decile literally means doing less well than 90 percent of other
stocks, not having return below (say) —15 percent.
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Capturing that relative condition would entail modeling the full covari-
ance structure of returns. Whether or not this would lead to smaller pre-
dicted momentum effects, however, is ambiguous. Intuitively, in up markets,
using relative performance breakpoints will lead to higher beta stocks in the
top decile than using absolute performance levels, and lower beta stocks in
the bottom decile, whereas in down markets, the reverse would be true.
(This argument is formalized in Grundy and Martin (2001).) Assuming mar-
ket risk is correlated (negatively) with the state—price density, this implies
that using fixed breakpoints understates the magnitude of predicted mo-
mentum effects in up markets and overstates it in down markets. To the
extent that the U.S. postwar market can be regarded as having experienced
positive excess returns, then, my reported effects are conservative.

A second caution in interpreting the results is that the single-firm numbers
in the table do not reflect the information about the firm parameters (op, s,
and «) that a performance sort captures. For example, the extreme decile
portfolios are more likely to be composed of firms whose unconditional vola-
tility is higher, meaning bigger o, and s and smaller «. Likewise, since time
zero volatility is an increasing function of growth rate, higher u, and @ may
be more likely for the extreme performers. Here the effect is ambiguous for
the poor performers, though, because higher initial x also implies higher
drift for the stock price.

Fully analyzing the effects of this additional parameter information would
require specification of a prior distribution over the possible configurations
(as well as the covariance structure again). Such an effort is beyond the
scope of this work. But the general effect is likely to work against the mono-
tonicity exhibited in Table I. The low performers would be unconditionally
more risky, leading to something of a U-shape in expected returns.

One calculation that can be readily performed to illustrate the point is to
integrate out the dependence on . Since the growth rate follows a stationary
Ornstein—Uhlenbeck process, it has a steady-state distribution (normal with
mean 7 and variance s2/2«), which is a natural candidate for the uncondi-
tional distribution of u,. Table II shows the effect on the cases in Table I of
integrating over this distribution. Now, for all the configurations, low realized
returns imply higher expected returns than in the previous table, because a
high initial u is more likely. The volatility effect outweighs the drift effect.
Overall, comparing I1 to 110, there is still a strong momentum effect. How-
ever, the empirical literature finds a monotonic relation here.® This presents
something of a problem for the model, and suggests that the picture—at
least as far as the worst performers is concerned—remains incomplete.

The model also has difficulty matching another feature of empirical stud-
ies: the dependence of the strength of the effect on both the formation period

8 Moreover, for individual stocks, the majority of momentum profits come from the under-
performance of the losers, which also contrasts with the model’s prediction. This is not the case,
however, for industry or country momentum portfolios (Moskowitz and Grinblatt (1999), As-
ness, Liew, and Stevens (1997)).
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Table II

Theoretical Momentum Effects (Continued)
The table repeats the calculation of Table I taking the beginning-of-period growth rate u to be
distributed according to its stationary distribution (instead of being set to its unconditional
mean).

Case In 12 13 14 15 16 17 I8 19 110
A 13.83 13.85 13.86 13.86 13.87 13.87 13.87 13.88 13.88 13.89
B 10.72  10.77 10.88 11.05 11.16 11.25 11.35 11.48 11.64 12.22
C 10.48 9.63 9.62 9.68 9.82 10.15 1051 1091 11.72 13.35
D 13,59 10.83 10.23 10.21 1039 10.72 11.88 12.88 14.15 18.02
E 1290 10.34 10.00 10.14 10.24 10.69 1154 1268 13.81 18.14
F 15.09 10.94 9.77 9.88 10.35 10.69 12.15 13.76 16.05 22.71

(over which momentum is measured to select portfolios) and on the subsequent
holding period. The typical patterns here are that (a) there are no extra
excess returns to holding momentum portfolios much beyond a year; and
(b) there are no excess returns at all when portfolios are formed on the basis
of performance over periods longer than a year or shorter than a few months.

This is too much complexity to reproduce in the current set up. As indi-
cated by Figure 1, the strength of the correlation between CER and EER
does not vary much with the formation period. Neither do expected excess
returns differentials decline much with holding period. They do decline, since
1 is a mean-reverting process (and hence EER is). However, as already re-
marked, the decay rate k—which is in units of inverse years—must be quite
small to produce large expected return differences.

The situation is summarized graphically by Figure 2. Here, I measure the
strength of the momentum effect by the differences in expected excess re-
turn between the highest and lowest performance brackets using different
lengths of formation and holding periods. The top panel (which uses param-
eter case A from Table I) is qualitatively similar to the empirical findings.
The strength of the effect is indeed maximized by using formation period of
about a year. And the anticipated excess returns do decay quickly with hold-
ing period. This is achievable because the parameter « has been set to unity
here, so one year is the characteristic decay period of growth rate shocks.

Unfortunately, the effect is minuscule (the vertical axis is in annualized
percentage points). Shocks that decay this quickly do not have big conse-
quences in terms of discounted dividend streams. The bottom panel shows
behavior typical of smaller values of k. Here the characteristic decay length
is 10 years. Now the decay with respect to holding period is very slow, and
the effect only grows stronger as longer term returns are used to define
momentum. The model simply lacks the flexibility to capture the enigmatic
pattern observed in real stocks while also producing strong effects.

The lack of a rapid mean reversion of expected returns points to another
weakness of the model as well. It predicts that volatility differentials across
performance levels should be persistent. The model implies that poor per-
formers have low expected returns because their future risk is low. And the
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Figure 2. Momentum effect as a function of holding and formation periods. The graphs
show the difference between expected excess returns conditional on high realized return and
that conditional on low realized return. The return differences are plotted as a function of the
expected holding period and as a function of the formation period over which realized returns
are measured. High (low) realized returns are defined as returns that would be in the top
(bottom) decile if returns were normally distributed with annual mean and standard deviation
matching the unconditional distribution of NYSE stocks from 1977 to 1992. The two cases
shown correspond to the parameter settings A and B shown in Table I.
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future risk of good performers should be high. Empirical studies fail to find
such differences, in either systematic or unsystematic risk, during the post-
formation period. This suggests that risk changes also decay quickly.

Finally, one may mention two further counterfactual implications of the
model when taken beyond the single-firm setting. First, it suggests that
high expected returns should be associated with high price—dividend ratios,
since, under the model, both things increase with w. The model thus makes
one asset pricing anomaly worse even as it addresses another. Second, since
aggregate growth rates would also be stochastic and command a positive
risk price, the model would seem to imply an aggregate momentum effect.?

There is no point in being too harsh on the model, however. Its virtue is its
simplicity. Clearly, real firms are not continuous, nonnegative dividend
streams. The remarkable thing is that one can generate such an apparently
irrational phenomenon from such an uncomplicated depiction. Still, the next
section asks whether the basic mechanism of the model, generalized some-
what, can indeed address some of the shortcomings outlined here.

II. A Generalization

There are a number of obvious ways to make the model of the last section
more realistic. This section implements one that retains the basic mathemat-
ical structure and preserves the original intuition, while adding significant
flexibility to the growth rate dynamics. Specifically, the nature of the inno-
vation process itself is permitted to change intermittently. The idea is to
introduce a characteristic time scale—the length of time between such struc-
tural changes—that can allow the model to match the apparent short dura-
tion of momentum-induced changes in excess returns and risks that real
stocks undergo. As a side benefit, the generalization brings the model closer
to the data on some other dimensions as well.

Formally, this is accomplished by augmenting the system with a two-state
regime indicator variable, S, upon which the dynamics of the growth rate
process may depend. Intuitively, I think of one of the regimes (S = 1, say) as
standing for periods of fundamental technological change in which growth
rate innovations are more or less permanent. The other regime (S = 0) would
correspond to the more normal state of affairs in which there may still be
growth rate shocks, lasting for a quarter, a year, or even a business cycle,
but not changing the long-term fundamentals.1©

9 This criticism applies generally to momentum models that focus on firm level autocorre-
lations, as pointed out by the referee.

19 The notion of small but persistent shocks to growth rates was suggested by Barsky and
DeLong (1993) as an explanation of the apparent “excess” volatility of the stock market. Donald-
son and Kamstra (1996) find evidence for such dynamics in dividend growth in the 1920s
sufficient to account for both the rise and fall of stock prices in that decade ex ante. Recently,
Bansal and Yaron (2000) showed that the same mechanism could potentially explain the equity
premium puzzle. Johnson (2001) introduces the idea of time-varying persistence to account for
predictable patterns of volatility dynamics.
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In continuous time, the process S is characterized by two switching inten-
sities, denoted A, and A;, whose units are inverse years. So if, for instance,
Ao = 1/10, then the expected duration of S = 0 episodes is 10 years. (Also,
over a small time interval A¢, the probability of a switch from S =0to.S =1
is AgAt¢.) The ratio Ay/(Ag + A;) = S represents the fraction of time spent in
the S = 1 state and is also the unconditional expected value of S. The intu-
ition in the preceding paragraph then suggests that S is small (transient
shocks are more likely) and A; is large (persistent shock episodes do not last
long). For simplicity, S will be taken to be independent of the other stochas-
tic processes in the economy.

To model the changing degree of persistence between regimes, the growth-
rate process will be decomposed into two component processes representing
the cumulative long-term and short-term shocks. I call these x, and y,, re-
spectively, and define them as follows:

dx, = ky(% — x,)dt + s,S,dW,* (4)
dy, = Ko(3 — y,)dt + so(1 — S,) AW, (5)
Mt =X T Ve (6)

with «; = ky. This formulation captures the idea of a given “shock” dw,*
possessing an intrinsic trait, coded by S,, corresponding to the length of time
it takes for its effect on u to decay. Another helpful way to write u is in
integral form:

t

W, = xge "1t + y e Fol + slf e t-wg qW K
0

t
+ Sof e Rl -8 YdW W,
0

(Here for brevity I am taking the long-run values to be ¥ = y = 0.) This
shows explicitly how the effect over time of a shock experienced at time %,
declines with ¢ as exp(—«;(t — ty)), with «; fixed forever by S, .

A more parsimonious (though unsuccessful) model for u is also nested in
this one. If k; = ky = k, then we have

du, = k(g — ) dt +s(S,)dW, ™",

where now s switches between two values according to S,. This is just a
simplified way of introducing stochastic volatility to the u process. The cor-
responding case where s; = s, in (4) and (5) also turns out to be inadequate.
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Although the model now has four stochastic state variables, it remains
fairly tractable. The dynamics are summarized in the following proposition.

Prorosition 3: With the processes A and D defined by equations (1) and (2),
and with the growth rate process given by (4)—(6), the stock price is

P(D,x,y,S) = Dt'(u(O)(xt’yt)'(l -8, + u(l)(xhyt)'st)y )

where u@( ) and u™( ) satisfy the coupled partial differential equations

2
%0 1O 4 (ko (5 = 9) + 50( pas s + ppop)]
g U oy — Y o\ PApnOA T PDpOp)IU,

+ [k (& —0)]ul? + [(x +y) =7+ prporoplu® + Ao —u@)-1=0

1 _
9 uly + [k (& — %) + So(prOA T PDMUD)]U;D

+ [ko(§ =y + [(x +y) =1+ prpoyoplu + 1, @@ —u) =1 = 0.
The instantaneous expected excess return and volatility of P are given by

EER; = —or{papop + pr, Y}

VOL, = (o + 2pp,op¥; + w2)l2)
where

(0) (1)

W= (1-8 Y g M

p =1~ t)'sl'u(o) + t'SO'u(l)-

The covariance between expected excess returns and cumulative excess re-
turns is

—PapoAYe-(pp op + )

with

J [ u? J [ull
YtE(l_St)'sl‘@<m>+St'80'£<u(l)>.

Under this model, the stock price process follows a jump diffusion. As the
proof notes, having a continuous process for the pricing kernel is tanta-
mount to having jump risk be unpriced. Thus, expected excess returns do
not depend on the jump parameters. Instead, the EER process is exactly
analogous to that of the model derived in the last section. Again, the key
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ingredient is the log derivative of the price-dividend ratio. Now, though,
there are two such ratios: ©@(x,y) and ©¥(x,y). Expected returns and vol-
atility simply toggle between the processes implied by each of these as S
switches. In particular, if momentum effects result mainly from the S = 1
regime, these will only last on average 1/, years. If this duration is, say, 0.5
to 1, that might account for the empirically observed dissipation of the ef-
fects for longer holding periods. Moreover, it might also explain why the
effects are strongest for formation periods of about this length: Large re-
turns over a longer period might no longer imply that S = 1 at the end of the
period; large returns over a much shorter period would simply be too noisy.

Against this potential, the model now threatens to dilute the strength of
predicted effects, whereas the original model already fell short of the return
differentials seen in the data. The total effect mixes that of the two possible
states of S at the end of the formation period. If unconditionally the S = 1
state is unlikely, then so are any expected return differentials. There is hope,
however, for two reasons. First, stronger effects can be induced in the S = 1
state of this model than could be in the original one.! Second, the S = 1
state implies higher stock volatility, making it relatively more likely than
the S = 0 state among extreme performers.

To investigate the net result, I explore some numerical examples. The cou-
pled differential equations defining u® and ¥ resist analytical solution,
but may be solved with standard techniques. As a first case, I set A, = 1/36
and A, = 1 so that S = 2.7 percent; hence persistent shocks occur on average
every 36 years and last around 1 year. The persistent shocks are taken to
have a decay constant of k; = 0.05 = 1/20 years, which implies a half-life of
about 14 years for these shocks. (The transient shocks have «, = 1.0. For the
other parameter choices see Table III.)

Figure 3 shows the resulting momentum effects for different holding pe-
riods and formation periods. Now the model is able to achieve quite rapid
decay of expected excess returns with holding period, closely matching the
rate reported by Rouwenhorst (1998) and Jegadeesh and Titman (2001). Even
better, the model is able to achieve the empirically observed peak of maxi-
mum effect at a six-month formation window. Most strikingly of all, the size
of the effect can exceed that of the earlier model in which all shocks are
persistent. The case in the figure even approaches the magnitude found in
the postwar data. This despite the fact that the firm being modeled here
only experiences persistent rate shocks once every 40 years.

Looked at another way, this last finding is even more unusual. If all stocks
had these parameter values, it would seem to suggest that the entire mo-
mentum effect at any one time could be due to the dynamics of a mere three
percent of them. This could at once address several of the difficulties with
the basic model mentioned in the previous section.

11 The proposition does not provide explicit integrability conditions under which the price is
guaranteed to be finite. Heuristically, the infrequency of the persistent state allows larger and
more persistent shocks, while keeping the long-run growth rate below the discount rate.
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Table II1

Theoretical Momentum Effects

The first panel shows the instantaneous expected excess return (continuously compounded an-
nualized percentage), using the model of Section II, for two sets of parameters, conditional upon
the previous 12-month performance. That performance is partitioned into 10 intervals of cu-
mulative return, whose intervals are defined by the breakpoints (-19.53, —7.69, 0.58, 7.70,
14.30, 20.90, 28.03, 36.31, 47.85). I1 corresponds to returns below —19.53 percent, 12 to returns
between —19.53 percent and —7.69 percent, and so on up to returns over 47.85 percent in 110.
The second panel lists the parameter settings for the cases. All cases put r = 0.05, x = y = 0.00.
The initial values of the growth rate components are distributed according to their steady-state
density.

Panel A: Expected Return as a Function of Realized Return

Case 11 12 I3 14 15 16 17 18 19 110
G 9.63 5.94 5.78 5.70 5.71 5.75 5.80 5.95 6.68 17.53
K 4.26 5.41 5.47 5.90 5.91 6.04 6.71 7.85 8.01 11.12

Panel B: Parameter Settings

N Ip PDp PAD A S K Pan
G 0.40 0.05 0.00 -0.70 S =0: 0.028 0.16 1.00 —0.70
S =1 1.00 0.08 0.05 -0.70
K 0.90 0.03 0.00 —0.30 S =0: 0.20 0.45 1.00 —0.90
S =1 1.00 0.033 0.06 0.00

First, it could help to explain the difficulty of picking up the incremental
risk (measured by market beta, for example) in portfolios of winners, or its
lack in losers. Second, it could mitigate the unconditional positive relation
between price—dividend ratios and expected returns. Momentum sorts now
work because they both condition on the level of w and on the likelihood of
being in the persistent-shock state. In contrast, a D/P sort would not achieve
the second: There would be no reason to expect a concentration of S = 1
firms in extreme D/P deciles. Finally, aggregating across firms, the percent-
age in that state would not fluctuate much. So aggregate growth rates would
not exhibit the regime-switching behavior that drives this model. Instead,
aggregate growth shocks would be almost entirely transient, leading to little
or no autocorrelation in the market as a whole.

One respect in which the model has not been improved is in matching the
smooth, monotonic increase of expected return with past return. In fact, the
U-shape seen in Table II is even more exaggerated. This is because, condi-
tional on middling performance, the unvolatile, transient state is much more
likely. In this state, risks are lower, so expected returns are depressed.

One way to mitigate this problem is to raise the amplitude of the transient
shocks. This might be plausible: Low-frequency fluctuations in growth rates
might well be of smaller magnitude than high frequency ones. Due to their
rapid decay, these would still have little impact on expected returns, but
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Figure 3. Momentum effect as a function of holding and formation periods. The figure
shows the difference between expected excess returns conditional on high realized return and
that conditional on low realized return. The return differences are plotted as a function of the
expected holding period and as a function of the formation period over which realized returns
are measured. High (low) realized returns are defined as returns that would be in the top
(bottom) decile if returns were normally distributed with annual mean and standard deviation
matching the unconditional distribution of NYSE stocks from 1977 to 1992. The figure employs
the parameter settings of Case G (see Table III).

would command a higher premium. Table III shows the momentum effect by
performance interval for two cases which use this assumption.

The first case (labeled G), is the one shown in Figure 3. Here, it is still the
case that expected returns initially decline with performance. All of the mo-
mentum effect is in the highest two or three brackets. The second case is
able to achieve a smoother dependence. Here, however, another degree of
flexibility has been added: The transient shocks have been assumed to have
a lower price of risk.’2 This does not seem unduly demanding. In fact, the
idea that marginal utility would be more affected by long-run shocks than
short-run ones is appealing. In terms of a consumption-based model, this
would just indicate a nonmyopic policy. The effect here is to make the Sharpe

12 That is, the two component processes x and y are allowed to have differing correlations
with the pricing kernel: |p,,| < |ps,|. The modifications to Proposition 3 are straightforward.
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ratio under S = 1 much higher than under S = 0. This causes the latter
cases to be relatively more likely the worse the observed performance.
This section has pursued the insight of the Section I that growth-rate
risks might rise with growth rates. Embedding the basic model in a more
flexible and realistic one, the theory can capture the peculiar dependency of
momentum profits on the length of formation and holding periods. Using
plausible parameter values, the magnitude of the effect can attain roughly
that in the data. The key addition is the possibility of time-varying persis-
tence in growth rate innovations. The model implies that the effects might
be entirely attributable to very infrequent, but highly persistent, shocks.

ITI. Conclusion

This paper advances the hypothesis that stochastic growth rates may ac-
count for some or all of the momentum anomaly. The argument works be-
cause stock prices depend on growth rates in a highly sensitive, nonlinear
way. Other things equal, recent performance is correlated with levels of ex-
pected growth rate, which is monotonically related to risk. This relationship
was demonstrated analytically by means of a simple partial-equilibrium model
that has previously appeared in the literature. A more sophisticated version
incorporating the notion of episodic, highly persistent growth rate shocks
was able to achieve agreement with observation along a number of challeng-
ing dimensions.

The results raise the possibility that the same basic mechanism could play
a role in all the anomalies that fall under the general heading of underreac-
tion. As Mitchell and Stafford (2000) have argued, the mispricing evident in
many long-horizon event studies seems to be due to common exposure of
event firms to the same source of benchmark error. The model here suggests
an economic rationale: Conditioning on a large stock return (the event) is
like conditioning on a persistent shock to dividend growth, which should
alter expected returns in the same direction.

Of course, investors could also systematically underreact to news. The point
is not to insist that markets are rational, but only to point out one alterna-
tive that does not rely on the opposite assumption. Whether or not the story
works empirically hinges on the answer to two questions.

First, do momentum portfolios, in fact, differ in their expected dividend
(or earnings or cash-flow) growth? (For some extremely suggestive evidence
based on country momentum portfolios, see Figure 4.) The model implies
that past performance is essentially acting as an instrument for persistent
changes in this expectation, which is readily testable.

Second, is growth rate risk priced? Perhaps the most fundamental objec-
tion to risk-based explanations of momentum (or any other cross-sectional
anomaly) is that the risk part of the story seems absent in the data. Mo-
mentum strategies do not appear especially dangerous. This paper has skirted
that issue by not identifying the state—price density covariance with which
is the relevant measure of dangerousness. For some, the explanation will
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Figure 4. Cash-flows of country momentum portfolios. The figure plots the average cash-
flow over book-value for portfolios formed from value-weighted country indices from 1970 through
1994. The winner and loser portfolios are, respectively, the top and bottom third of 18 countries
sorted by prior 12-month return, with 1 month skipped before formation. The data are from
Asness, Liew, and Stevens (1997, exhibit 7).

remain unconvincing until plausible candidates are found. (Recently Chordia
and Shivakumar (2001) have uncovered evidence of systematic variation in
momentum profits with certain business cycle variables.) The empirical task
here is to establish (a) whether there is a systematic and persistent compo-
nent to growth rate shocks at all; and (b) whether exposure to that compo-
nent is associated with positive expected returns, independent of momentum.

Whatever one’s view of the existing behavioral explanations, the theory
presented here has the benefit of offering clearly defined quantitative pre-
dictions about risk and return in terms of familiar and (to some extent)
observable characteristics of individual firms or portfolios. Exploring these
is the subject of ongoing research.

Appendix: Proofs
LemmaA 1: Let U(x) be as defined in (b) of Proposition 1 and assume the con-
dition in (a) is satisfied. Then, for all x, U'(x)/U(x) is a positive, increasing
function.
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Proof: First, the integrand in the definition of U( ) is positive, so U > 0
for all x. Next, by assumption, {; < 0. So regardless of the signs of the other
terms in the exponential, that integrand is bounded by exp({;y) (where y is
the integration variable). Hence, differentiation with respect to x may be
taken inside the integral. Call the integrand A (y). Then

d 1
— fh(y)dy = e h(y)dy
X K

and [e “h(y)dy < [h(y)dy. So

U'(x) %[U(x) — e ((x/0720) fe_"yh(y)dy]

1
2 o z0) [ f h(y)dy f e%(y)dy] > 0.
K

To see that U'(x)/U(x) is increasing, write

(Z
U

!

>, | Jenimay

[ rray

2

) fe—ZKyh(y)dy Je‘“yh(y)dy

K2

[rray [rray
i 1
2

(fmy)dy)Z |
X |:<fe_2Kyh(y)dy><fh(y)dy> — <fe_"yh(y)dy> :|

The third term in the last expression is positive by an application of the
Cauchy—-Schwartz inequality. Q.E.D.

PROPOSITION 2: Let F, be the time t information set. Then, assuming pp,, = 0
and p,, <0,

E[(CERH( - E[CERt+e|-7:t])‘(EERt+€ - E[EERt+€‘E])|E] > 0.
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Proof: The covariance to ¢ + ¢ is the integrated expected instantaneous
cross-variation of the two processes. From It6’s lemma, the diffusion term of
the EER process is

’

Uy (w)
_pA,uU'AS ? th .

So the instantaneous covariance is

Uy U’
TPALOAS F . O-DpD,U.—’_US .

The terms involving U( ) are positive by the lemma. So are o,, op, and s.
The assumption about the correlations then ensures that the cross variation
is always positive. Hence, its integrated expected value from ¢ to ¢ + ¢
is. Q.E.D.

ProposiTionN 3: With the processes A and D defined by equations (1) and (2),
and with the growth rate process given by (4)—(6), the stock price is

P(D,x,y,S) = Dt'(u(O)(xt’yt)'(l -8, + u(l)(xtayt)'st)a (A1)

where w9 ( ) and u™( ) satisfy the coupled partial differential equations

2
S0 (o _
9 u;/y) +[ko(§ —¥) +50(prnon + ppuop)luy’

+ (k12— 2)]u@ + [(x +y) —r+ paporoplu® + Ag(w® —u@)—-1=0

2
ol [ (8= 0) + 80P, + ppu0p) !
9 xx KX X So pAp.a-A pD,u. Op)iUy

+[ko(§ = ]ug? +[(x +3) =1+ papopoplu® + A4,@® —uV) -1 =0.
The instantaneous expected excess return and volatility of P are given by

EER, = —ox{papop + pr Wi}

VOL, = (o2 + 2pp,op¥; + v2)l2)

where

) 2@
— Y X
\Irtz(l_St)'Sl'u(O) +St‘30‘u(1).
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The covariance between expected excess returns and cumulative excess re-
turns is

—PapOAYe-(ppuop +Y,)

with

J [ u? J [ull
YtE(l_St)'sl'@<m>+St'30'£<m>-

Proof: The proof is an application of the generalized It6 formula for jump
processes (cf. Gihman and Skorohod (1972), I1.2.6) to the product A, P,. Using
this and the specification of equation (1), the expected instantaneous change
in this product is

—r-P, + DP,- A, + (A, P)

A2
+{AP(S=1)—P(S=0)1—-S)+1,(P(S=0)—P(S=1))S}A,, (A2)
where DP, is the usual It6 drift

2 2 2 2 2 2
Op 8 P So 8 P S1 8 P
—D?’—+—-—1-8)—+—=—08)—

2 oD? 2 ( ) dy? 2 ( )ze

’p 9%P 2
+ ppyopDsy(1 = S) aDay + pp.opDs1(S) Dox T PryS051(8)(1 —S) e

P P P
+ (D) 5 + (ko(§ = ¥) o (rey (& = ) =

and (A,,P,) the instantaneous covariance

oP oP oP
or{(papopD) D + (payso(1 = 8)) 5 + (Prx$1S) P E

The final term in (A2) is the contribution to the expected change from the
possibility of a jump in P, which is multiplied by the jump intensity relevant
to the current state. (Note that the continuous process A can have no co-
variation with the jump component of P.)

Next, by definition, the pricing kernel A (whose existence is assumed)
determines P by the equation

AP, = EtU AuDudu].
t
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Since the process E{[,;"A,D,du} is a martingale, the expected change in
A, P, must also be given by —A,D,. Equate this to (A2), and use S(1 —S) =0
to simplify. Also noting that we have defined the innovation to both x and y
to be the same process dW #, the six correlations collapse to three (labeled in
the obvious manner). Plugging in a solution of the form (A1) and dividing by
D yields a partial differential equation that the price must satisfy. This one
equation must be satisfied whether S = 1 or S = 0. The two equations given
in the proposition correspond to these two cases.

The derivation of the moments of the return process in terms of the solu-
tion is then a straightforward application of It6’s lemma. Q.E.D.
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