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Key Points 

• AI technologies recently made breakthroughs in weather forecasting and showed promise 

in climate simulations. 

• We develop two representative use cases to demonstrate that hurricane risk modeling can 

benefit from the recent AI advancements.  

• Our baseline generative models trained with the atmospheric reanalysis dataset can emulate 

relatively realistic hurricane hazards (e.g., wind and precipitation).    

• Our experimental system built on Google’s AI-physics climate model can simulate realistic 

tropical cyclone activity and make skillful seasonal predictions. 

 
1  The original proposal focuses on modeling with Generative Adversarial Network (GAN). This exploration 
documented by this report exceeded the original scope substantially and covered more TC-related risk applications. 
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• The existing AI technologies still have limitations but will likely continue improving and 

unlock greater value for businesses seeking to enhance their risk modeling capability. 

1 Introduction 

The billion-dollar disasters caused by weather perils have been increasing in the US [1] and 

other parts of the world [2]. In 2024 alone, the US experienced five tropical cyclones (TCs), 

including Hurricanes Helene and Milton, making six Atlantic hurricane seasons in 2017–2024 

ranking among the top ten costliest. With the ongoing climate change and societal shifts (e.g., 

migration and inflation), the financial risks associated with weather perils, such as hurricanes, 

severe thunderstorms, and wildfires, may experience profound changes [3]. These converging 

factors have led to a surge in demand for risk management services and instruments. For example, 

the insurance and reinsurance industry increasingly relies on instruments like catastrophe bonds, 

helping the market size double over 2014-2023 and hit a record high of more than $47 billion [4]. 

This growing market attracted new participants, including hedge funds, some of which devised 

highly profitable trading strategies by exploiting pricing inefficiencies [5]. Businesses unprepared 

for weather-climate catastrophe events face substantial losses (e.g., PG&E), while those who can 

accurately assess and price these risks stand to gain significant advantages. 

The pricing of weather-climate catastrophe risks is challenging for conventional finance 

modeling, particularly with changes in physical and societal risk exposure. This complexity has 

led to the development of specialized catastrophe models, which attempt to combine the strengths 

of both physical and statistical approaches. While pure physical models offer the ability to simulate 

rare and extreme events, they are computationally expensive, require specialized expertise, and are 

prone to biases. Conversely, statistical models are more affordable and easier to implement, but 

they struggle to account for unprecedented events in a changing environment. Integrating the 

insights from these models is crucial for successful risk assessments and investments, but 

interested stakeholders often lack transparent, universally accepted solutions. The analytics by 

academic researchers and commercial vendors often are proprietary, tailored to specific tasks, and 

sometimes yield conflicting results [6]. To protect their investments and gain a competitive 

advantage, resourceful players like brokers and hedge funds acquire third-party products from 
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multiple vendors and build internal modeling capabilities. Such a sophisticated approach is often 

out of reach for less resourceful market participants, leaving them in disadvantageous positions.  

Recently, AI models made breakthroughs in image generation and weather simulations, raising 

interesting possibilities for weather-climate risk modeling. Similar to how AI can synthesize 

realistic-looking human and pet images, AI models can be trained to synthesize potential weather 

peril scenarios based on user prompts. The training can leverage historical weather data known as 

“reanalysis,” a comprehensive dataset combining observational data with outputs from physical 

models [7]. When tailored to specific business needs, an AI model trained with reanalysis or other 

observational data can synthesize weather perils and contribute to flexible scenario analyses. In 

parallel to generative AI, another exciting breakthrough occurs in weather forecasting. Since 2022, 

the performance of AI models trained with reanalysis datasets improved quickly and has overtaken 

the best physical model in some forecasting tasks [8–11]. Compared with existing physical models, 

the simulation speed of these new AI models is also up to 10,000 times faster and thus more 

computationally affordable. The combination of accuracy and speed can unlock applications such 

as agile user-driven analytics and extensive sampling of rare, high-impact events (e.g., hurricane 

landfall). New AI models are also making strides in long-term climate simulations [11, 12]. If 

successful, they may offer an independent, cost-effective workflow to synthesize weather perils 

for risk analysis and complement existing tools in catastrophe modeling.  

Building on the potential of AI outlined above, we now turn attention to two specific 

applications in hurricane risk modeling: 1) Generative modeling of hurricane hazards; and 2) AI-

driven climate prediction. The first case seeks to complement existing catastrophe modeling tools 

by striking a balance of data granularity and computational affordability. The second task explores 

what may enable new AI models to model and predict risks across time scales ranging from days 

to seasons. While traditional catastrophe models often rely on complex, layered systems tailored 

to specific tasks, this paper explores how rapidly improving AI tools offer the opportunity to 

streamline these processes. Specifically, we investigate the feasibility of these AI-driven 

approaches and evaluate the potential for new players from the technology sector, such as tech 

giants and innovative start-ups, to enter the risk modeling space. 
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The rest of this work paper is organized as follows. Section 2 introduces the data, infrastructure, 

and modeling methods. Section 3 describes the preliminary results of generative modeling and AI-

driven climate prediction. Section 4 provides a summary and discusses future directions. 

2 Data and Methods 
2.1 Observational Data 

This study works with publicly accessible datasets to ensure the replicability and flexibility of 

future research. Following most existing weather-AI studies, we use the ERA5 reanalysis [7] for 

model training and validation. The reanalysis is generated by a numeric weather forecast model 

that follows physical laws and ingests multi-sourced observational data (e.g., weather station and 

satellite data). This approach allows the model to leverage observations as much as possible and 

infer the weather conditions where observations are scarce (e.g., oceanic regions that spawn 

hurricanes). Compared with raw observational data, the gridded reanalysis data provide a 

comprehensive, easy-to-access set of variables relevant to disaster damages. While the ERA5 

reanalysis has limitations (e.g., sparse grid points and precipitation biases), the dataset is a useful 

starting point for experimenting with new concepts and tools.  

The author also uses two additional datasets for hurricane research. The first is the International 

Best Track Archive for Climate Stewardship (IBTrACS) [13]. This dataset includes a collection 

of hurricane information (e.g., location and intensity) based on multi-sourced observations and 

quality-controlled by operational forecasters and experts. For hurricane research, the dataset is 

widely considered truth-like and more trustworthy than reanalysis datasets, which struggle with 

representing intense hurricanes [14]. The second dataset is Tropical Cyclone PRecipitation, 

Infrared, Microwave, and Environmental Dataset (TC PRIMED) [15]. This dataset combines 

information from the ERA5, the IBTrACS, and satellite imagery. Using the best track data as the 

reference, the TC PRIMED aligned individual storms from all the data sources via domain 

centering and cropping. The newly available TC PRIMED thus mitigates the data pre-processing 

burden and facilitates our generative modeling effort.  
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2.2 Modeling 

2.2.1 Computing Infrastructure and Preparation 

The modeling and simulation of this study rely on graphics processing units (GPUs) and 

involve deploying new hardware and software infrastructure. While alternatives (e.g., cloud 

computing) exist, our initial development and concept proof use on-premise resources. This choice 

makes it straightforward to leverage existing local resources (e.g., IT support and researchers) and 

train future students. During the project implementation period, the PI secured funding from 

multiple sources (~$140,000 investments) to install high-performance computing nodes that 

consist of CPUs and GPUs. The ensuing software and data preparation were conducted by the IT 

support and the PI. The computing work of this project uses ~25% of the new resources (2× Nvidia 

L40S GPUs) over multiple weeks. We took a disciplined approach with the computational budget 

so that interested parties can easily procure resources to validate and improve our work.  

2.2.2 Generative Modeling of Hurricane Hazards 

Following the original proposal submitted to the Office of Risk Management and Insurance 

Research, the generative modeling uses the Generative Adversarial Network (GAN) [16] and its 

variants Conditional GAN [17] as the baseline models. The GANs build on the competition 

between a generative model and a discriminator model, which challenges both models to improve 

during the training. But for the data synthesis tasks, the GAN and its variants are usually hard to 

tune and improve. Leveraging the software infrastructure built for GAN-based experiments, we 

test additional generative model architectures, such as the diffusion probabilistic models [18] that 

serve as the foundation of many state-of-the-art image generators. The diffusion models take 

iterative steps to link labeled images to arbitrary noises. The diffusion models can attain realistic-

looking synthesis more easily but tend to take more resources to train and deploy. 

We train the GAN and the diffusion models using the northern-hemisphere hurricane samples 

in the TC-PRIMED from 1999 to 2020. For each hurricane case, we search the ERA5 subset of 

the TC-PRIMED and save three hazard variables (i.e., near-surface wind speed, precipitation, and 

sea level pressure). The wind speed and precipitation are key physical drivers of hurricane damage, 

while the sea-level pressure is a skillful predictor of hurricane damage [19]. The data is available 
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on a 6-hourly basis with a grid spacing of 0.25 degrees in the latitude and longitude dimensions, 

which approximately corresponds to 25 km in the tropics. We group these 6-hourly snapshots 

(N=37754) based on the concurrent intensity information from the best track dataset. This results 

in six categories including Category 0-5 hurricanes. These intensity labels, along with the two-

dimensional (latitude ×	longitude) of hazard information fields, serve as input for training the 

generative models. Each model is trained for approximately 8 hours on a single GPU. After the 

training, the models synthesize hazard data of potential hurricanes with user-specified random 

noise and intensity labels. This concept proof considers the intensity labels only and is possibly 

the simplest configuration. In principle, additional labeling (e.g., over land or not) can be 

embedded in the training to create models to accept relevant instructions. 

2.2.3 AI-driven Climate Prediction 

Compared with existing physical models, recent AI models perform well in forecasting 

weather for up to two weeks but still face notable challenges in climate prediction. Recent 

developments have shown models trained with the ERA5 reanalysis can support stable long-range 

simulations [11, 12]. A promising model is the NeuralGCM developed by Google, which uses the 

backbone of physical models but represents small-scale physical processes with machine learning 

methods [11]. Unlike the other data-driven models, the unique approach of the NeuralGCM makes 

it more straightforward to constrain the atmospheric simulation with climate forcings (e.g., sea 

surface temperature). Meanwhile, the speed-up of AI models is mostly retained, and the model can 

simulate realistic hurricane activity in a test using the climate forcings from the 2020 Atlantic 

hurricane season. After the NeuralGCM study was published by the Nature journal, the CEO of 

Alphabet and Google, Sundar Pichai, promoted the new hybrid model on social media:  

“NeuralGCM, a breakthrough in climate modeling. It combines physics-based 

modeling with AI, and is up to 100K times more efficient than other models for simulating 

the atmosphere, providing scientists with new tools for predicting climate change.” 

The PI coordinated with the Google research team and became one of the first external 

researchers to experiment with this new model. Noting that the NeuralGCM natively supports the 

use of time-varying climate forcing, we set up the NeuralGCM on the newly configured on-
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premise computer and run new seasonal prediction experiments. These experiments use the 

assumption of fixed anomalies of sea surface temperature [20], which helped approximate the 

evolution of the ocean state (e.g., the El Niño–Southern Oscillation) and establish the skill of high-

resolution climate models in predicting hurricane activity. Specifically, we conduct prediction 

experiments initialized on July 1st for years between 1990 and 2023. Each year’s prediction lasts 

for ~160 days and consists of twenty parallel simulations to sample the probability space. In terms 

of data record length, the 108,800 simulation days of the experiments are approximately 4.5 times 

that of the historical observation coverage and approximately 1/30 of the extensive physical 

experiments that the author used for earlier academic studies [21, 22].  

This set of seasonal prediction experiments serves multiple purposes. First, this is an initial 

attempt at the community-driven development of the NeuralGCM and will provide helpful 

feedback to model developers. Second, this effort helps evaluate the potential of applying the 

NeuralGCM in seasonal prediction tasks, which may ultimately inform the pricing of hurricane 

risk. Third, a large amount of simulations can help assess whether the NeuralGCM can synthesize 

hurricanes and assist in catastrophe modeling. As will be shown in Section 3, our configuration 

with the current, public version of the NeuralGCM attained performance comparable to existing 

models, despite several hurdles in the model implementation. Considering license constraints, we 

briefly document initial results and refrain from discussing ongoing development activities2.  

3 Results 
3.1 Generative Modeling of Hurricane Hazards 

We evaluate the performance of generative models by comparing samples from the TC-

PRIMED, the GAN, and the diffusion models (Figures 1-3). The GAN and diffusion models 

synthesize storms based on the input of hurricane categories and need random noise to generate 

diverse samples. We experiment with larger numbers of generated samples (~104) and present 

analyses with a fixed sample size to facilitate a fair comparison with the TC-PRIMED analysis. 

Specifically, we randomly draw samples from the TC-PRIMED from each intensity category and 

show the means of storm-centered data fields of near-surface wind speed, precipitation rate, and 

 
2 Google updated the user license in December 2024 and removed the previous “Non-Commercial” restriction. 
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sea level pressure. The size of each sample group is equal and set to 100. The sample size is 

relatively small since the TC PRIMED data have only ~330 samples in the Category 5 group. 

Accordingly, the means of TC-PRIMED fields are compared to the means of the outputs of the 

generative models of the same sample size.  

The generated samples are similar to those from the TC-PRIMED, even though some 

differences are apparent. In almost all the cases, the generated samples show distinct hurricane 

features, including a relatively calm eye and an eyewall with serious hazards. For each intensity 

category, the GAN produces storms with size and maximum wind speed like those in the TC-

PRIMED.  A close inspection suggests some samples generated by the GAN have artifacts of small 

scales. In comparison, the storm hazards from the diffusion model tend to be broader and more 

severe than those in the TC-PRIMED. The generated samples, however, show reasonable 

structures even at the fine scale. Finally, both models can generate many samples at a pace much 

faster than physical model simulations. Nonetheless, the GAN (~5,000 samples per minute) is 

notably faster than the diffusion model (~30 samples per minute). Overall, the two generative 

models have different strengths and weaknesses in replicating hurricane samples that resemble 

those in the training dataset (i.e., the TC-PRIMED).  

The fidelity of the training dataset affects the performance of AI models and is also worth 

remarks. While some studies use the ERA5 as the observational truth in hurricane-related risk 

analysis [23], the dataset struggles with representing the most extreme wind [14]. This issue is also 

illustrated in Figure 1. For example, the maximum wind associated with Category-3 hurricanes is 

expected to be within 50–58 m s-1, but the analyzed samples show much weaker wind speed on 

average. While higher extreme values appear in individual samples, they are all well below the 

maximum wind speed values from the IBTrACS. Therefore, all the AI models that use the ERA5 

as the training dataset likely underestimate the severity of the extreme wind. Biases are likely 

present with the precipitation rate and the sea level pressure. 

With additional bias correction or tuning, the performance of the generative models likely can 

improve. For example, a straightforward way for bias correction is to introduce a scaling factor to 

calibrate the training dataset or the model outputs against the IBTrACS or other datasets. The fine-

scale issue of the GAN model may be overcome by moving beyond the baseline model and 
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adopting more sophisticated models. The baseline diffusion model may also be improved via 

various strategies. For example, the sensitivity of the diffusion model to the intensity label input 

can be tuned with a parameter that controls the balance between fidelity to the original data and 

the intensity guidance. Figure 4 shows that higher values of this parameter can lead to more intense 

storms. We also speculate that the biases of the diffusion model can be mitigated by optimizing 

the training strategy (e.g., balancing the group sizes) and using more realistic training data. 

 

 

Figure 1 Near-surface wind data from the ERA5 (top), the GAN (middle), and the diffusion model 

(bottom). Each subplot is the mean of 100 samples. The columns are storms with the Saffir-

Simpson intensity ranging from 0 to 5. The intensity label of the TC-PRIMED (ERA5) is based on 

the IBTrACS. The intensity label of the generative model outputs is user-specified. The extreme 

value on top of subplots is calculated based on the sample means. The unit of the wind speed is m 

s-1. 
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Figure 2 Same as Figure 1 but for precipitation (mm day-1). 

 

Figure 3 Same as Figure 1 but for sea level pressure (hPa). 
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Figure 4 Sensitivity of diffusion model to the choice of the guidance weight (W). The columns show 

the results for each category of hurricane intensity. The rows show the results corresponding to 

different W values. Higher W values mean stronger guidance, and lower W values mean weaker 

guidance. The other settings are the same as in Figure 1. 
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3.2 AI-driven Climate Prediction 

Here we seek to extend the capability of the NeuralGCM to experimental seasonal prediction. 

Our strategy resembles the development of physical climate models and starts with an experiment 

with prescribed sea surface temperature (SST) forcing. The slowly-varying SST forcing includes 

key information such as the El Niño/Southern Oscillation (ENSO) and is crucial for the seasonal 

climate prediction of the climate statistics [24], such as the activity of hurricanes and other 

extremes (e.g., atmospheric rivers). Because of the thermal inertia of the ocean water, the simplest 

representation of the SST forcing can be generated via the persistence or autoregressive models of 

anomalies. The SST forcing can also be generated via more sophisticated statistical or physical 

models. The results presented here are generated with the persistence of anomalies and serve as a 

demonstration of feasibility. 

We initialize the NeuralGCM on July 1 of the years between 1990 and 2023. The initial 

conditions are acquired from the ERA5, which is quasi-realtime with a lag of several days for 

public users. We generate the SST and sea ice forcings using the assumption of persistence 

anomalies. Therefore, all the information needed for operational predictions would be available 

near the start date, unlike the original NeuralGCM experiments that rely on knowledge of future 

SST and sea ice forcings. We then run twenty parallel simulations (i.e., ensemble size) using the 

NeuralGCM with slightly different model parameters. To better sample the probability space, more 

parallel simulations can be introduced by perturbing the model parameters or using slightly 

different initial conditions. The size of the 20-ensemble simulation is larger than most operational 

physical models and can be extended affordably. With our initial implementation, a 5-month 

simulation with a 1.4-degree spatial grid can finish in approximately 14 minutes on a single L40S 

GPU. The execution would be ~50% faster on Google’s cloud infrastructure.    

Figure 5 shows the skill of the simple configuration in forecasting the atmosphere state. The 

target variable is the geopotential height at 500 hPa, which is approximately 5-6 km above sea 

level. This variable describes the atmosphere circulation state (e.g., the North Atlantic Oscillation) 

and is frequently used to evaluate the quality of weather forecasts. We evaluate the consistency of 

the July to September means between the NeuralGCM prediction and the ERA5 reference, which 

corresponds to the peak of the Northern Hemisphere hurricane activity. This result and analyses 
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of other variables (not shown) suggest the simple configuration can skillfully forecast the 

atmosphere state months ahead. Such skills are essential for the seasonal prediction of TC activity. 

Despite the relatively coarse resolution of the NeuralGCM configuration, the seasonal 

simulation produced vortices that resemble hurricanes (Figure 6). In the forecast snapshot of 

August 28, 2020, a simulation generated two vortices with tropical storm winds (>17 m s-1) in the 

northern Atlantic. The first one is east of New York state of the US, and the second one is weaker 

and travels in the tropical Atlantic. A closer examination of these vortices suggests that they follow 

typical trajectories of Atlantic hurricanes. The first vortex resembles a recurving hurricane that 

moves along the East Coast, and the second vortex resembles a westward-moving hurricane that 

develops from the African coast and moves toward the West Indies. Such vortices are common in 

the other basins and simulations initialized in other years. The skillful simulation of a large-scale 

environment (Figure 5) and hurricane-like vortices suggest that our configuration simulates 

relatively realistic hurricanes3.  

The experiments and analyses also revealed limitations of the experimental system. One issue 

is the model instability that results in unrealistic data fields (not shown). The instability in these 

failed simulations is similar to that documented by the original NeuralGCM paper. It often 

originates from the tropics and appears to arise from gravity waves associated with convection. 

The instability happens more frequently in some predictions than in others. The instability issues 

are also accompanied by mean state drifts that are common in physical model simulations. The 

current study discards simulations with those problems, and fixes are being tested by the Google 

team. Another notable issue is that the public version of the NeuralGCM does not output surface 

variables4 such as wind speed. The lack of surface wind speed makes it hard to directly compare 

the model output with the best track observations.      

Despite those challenges, we managed to apply an objective tracking algorithm [25] to identify 

hurricanes and showed that our configuration can make skillful seasonal predictions of Atlantic 

hurricane activity. Figure 7 shows the seasonal hurricane counts in the observation and the model 

 
3 Later analyses in December 2024 suggest model deficiencies in simulating some aspects of hurricane structure. This 
issue will be discussed by an upcoming publication. 
4 An update in late 2024 allows users to access the surface pressure variable and partly alleviates the issue. 
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simulations. The correlation between the observation and the ensemble mean is 0.67, with high 

statistical significance (p<0.01). High skills are also found for intensity metrics (e.g., accumulated 

cyclone energy) and in the Northeastern Pacific basin (not shown). The author notes that such 

performance is similar to top-performing physical climate models[26] and might be near the limit 

of potential prediction skills[27]. More details about the model performance and limitations will 

be documented in an upcoming peer-reviewed publication. 

 

Figure 5 Skills of the NeuralGCM configuration in predicting the 500-hPa geopotential height. 

The predictions are initialized on July 1 of each year between 1990 and 2023. For each grid point, 

the predictions are validated against the July-September means of the ERA5 data. The skill metric 

is the anomaly correlation coefficient, with the 95% confidence level signals highlighted with 

hatching.  
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Figure 6 Snapshot of the atmospheric state in one prediction simulation. The color shading shows 

the near-surface wind speed (m s-1). The contours show sea-level pressure.  Hurricane features 

include strong wind and low values of sea-level pressure. Other parallel simulations yield active 

hurricanes during the hurricane season. 

 

Figure 7 Seasonal Prediction Skill of the Experimental Configuration.  The black line shows the 

annual North Atlantic hurricane counts in the observation. The blue lines show the same variable 

in the seasonal prediction experiments. The dark blue line shows the ensemble mean, and the light 

blue line shows the individual ensemble members.  
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4 Summary and Discussion 

This report documents the progress of the PI in leveraging AI techniques to model hurricanes. 

The one-year project sets up the research infrastructure and investigates the generative modeling 

of hurricane hazards and AI-driven climate prediction. Despite challenges related to the new 

technologies, the findings about their applications are encouraging. Specifically, the baseline 

implementation of generative models can reasonably emulate hazards similar to those in the 

training dataset. The simple implementation of the Neural GCM prediction can skillfully predict 

the large-scale environment during the Northern Hemisphere hurricane season and simulate 

hurricane-like extreme features. The results suggest that these AI technologies can complement—

if not disrupt—the existing technologies in hurricane risk modeling soon. 

Future development should conduct more thorough evaluations, particularly against existing 

technologies and user needs, to prioritize the most valuable development efforts. For example, the 

outputs of the GAN respect the user-specified intensity label and show good consistency with the 

training data, but the fine-scale features have noisy artifacts. While physical scientists may 

consider such fine-scale issues unacceptable, practitioners may find the baseline GAN model is 

adequate to complement the widely used parametric models. Another example is the evaluation of 

the NeuralGCM prediction. A thorough evaluation with more initialization months and more target 

variables is necessary to clarify the strengths and weaknesses of the NeuralGCM relative to 

physical models. Depending on evaluation and user needs, future development may prioritize 

analyzing other weather perils (e.g., flood risks), improving prediction skills (e.g., refining the SST 

forcing), or expanding model capabilities (e.g., increasing spatial resolutions).  

Besides the follow-up development suggested earlier, some bottlenecks need to be addressed 

to fully realize the potential of these AI technologies. With additional tuning and optimization, the 

GAN and the diffusion models likely can better emulate the hurricane features in training datasets. 

However, the training dataset ERA5, which is used by most AI models, has notable biases in 

representing hurricane-related extreme conditions. Without improving or replacing the training 

dataset, the performance of AI models trained with the ERA5 will be universally bottlenecked5. 

 
5 Nvidia released a diffusion model in June 2024. The model has a more advanced architecture and was trained using 
better observational data (https://blogs.nvidia.com/blog/weather-forecast-corrdiff/). 
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The data interface is also an area that needs more resource investments. The development of the 

NeuralGCM configuration encountered various technical obstacles. While the expertise to address 

those issues exists in academic institutions and technology companies, such expertise remains 

relatively scarce among the end users in the finance sector. Addressing this issue can help 

ambitious players to make the best use of the rapidly evolving technologies.  

We also recognize that alternative approaches to leverage AI technologies exist. For example, 

the risk modeling of TC activity or the seasonal prediction tasks can be addressed with task-

specific solutions [25, 26]. In comparison, our efforts with the NeuralGCM envisioned a general-

purpose solution that can potentially model all hazards and make hours-to-year predictions in a 

single, unified framework. The compelling benefits of such an approach include the simplicity of 

future infrastructure maintenance and the capability of natively addressing multi-hazard 

compounding risk. We believe such features, together with the high accuracy and fast speed of AI-

driven simulations, can provide a unique business edge to risk-sensitive users in the finance sector.  

The first numeric weather prediction was implemented in the 1950s and took over half a 

century to perfect. The current wave of AI weather model innovation started around 2022 [28, 29] 

and has achieved remarkable skills over two years. Given the results of this project and other peer 

studies, the author believes that AI models will be ready to play important roles in risk modeling 

within this decade and help stakeholders address weather-climate challenges.   
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