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Introduction 

Natural catastrophe damage is increasing due to greater population exposure, growing wealth, 
and climate change. Yet damage estimates are notoriously imprecise. Margins of error for 
damage caused by some of the largest catastrophes are in the tens of billions of dollars, and 
geographically granular damage information is very rare. While insured damage is known to 
insurance companies, the sensitive nature of such data means that building-level claim data is 
seldom available to researchers. Moreover, widespread underinsurance means that observing 
insured damage is insufficient to understand the full effect of a catastrophe. With granular data 
on many individual-level outcomes becoming increasingly available, lack of geographically 
precise damage data prevents researchers from undertaking studies that would improve our 
knowledge of natural catastrophe impacts and how to mitigate them. For example, Medicare 
administrative data report the 9-digit ZIP code of beneficiary residence—a small geographic area 
often encompassing just a few houses—and tracks beneficiaries’ health utilization and outcomes 
over time and space. However, without granular damage data, it is not possible to definitively 
identify individuals who were directly affected by a disaster. 
 
We address this shortcoming by applying a computer vision model to disaster imagery data and 
creating a spatially detailed damage database for six major US hurricanes. The model uses 
Siamese Neural Networks—a deep learning technique—to detect buildings and classify their 
damage level. The network is trained using the XView2 dataset, which provides hand-coded 
building damage estimates for different disasters types—including floods and hurricanes—across 
15 countries and the corresponding imagery. We applied a modified version of the trained model 
to disaster imagery from six recent US hurricanes to determine building-level damage in a subset 
of affected areas. The resulting database—comprising nearly 1.7 million buildings—can pave the 
way for several research projects, including assessments of mitigation strategies and individual-
level responses to catastrophes.  

Background 

The xView2 AI Challenge was a competition organized by the Department of Defense's Defense 
Innovation Unit (DIU), in collaboration with the National Geospatial-Intelligence Agency (NGA), 
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the Defense Advanced Research Projects Agency (DARPA), and the Office of Naval Research 
(ONR). The competition’s goal was to accelerate research and development in object detection 
and image classification for overhead imagery using deep learning methods. Prior to the 
competition, the typical approach to surveying damage in the aftermath of a natural disaster was 
to manually annotate satellite and aerial images for building damage. This process was labor-
intensive and typically took weeks. The goal of the challenge was to encourage the development 
of an algorithm that could automate this process, reducing the amount of time and resources 
required and ultimately expediting recovery responses. Challengers received access to the xBD 
dataset, which contains 850,736 hand-annotated buildings and spans 45,362 square kilometers 
of satellite imagery. Building damage was classified on a four-point scale, ranging from 0 (no 
damage) to 3 (completely destroyed). Submitted algorithms were assessed based on their 
performance in a hold-out sample.  
 
The winning entry, whose code was subsequently made open-source, employed the U-Net 
Convolutional Neural Network (CNN) architecture, which is a popular algorithm for semantic 
image segmentation. Our project built on this algorithm using the open-source xBD database 
mentioned above and pre- and post-disaster imagery for six recent US hurricanes (Ida, Delta, 
Laura, Florence, Harvey, Michael) from Maxar’s Open Data program. Pre-processing of these 
images was highly labor intensive. First, an analyst had to select images with minimal cloud 
coverage, visually determine areas of overlap between the pre- and the post-disaster imagery, 
and clip the images to the area(s) of overlap. Second, images had to be manually cropped to 
maximally exclude areas without buildings (e.g., farmland). Third, the resulting images were split 
to create 1024 by 1024 tiles to match the format of the xBD database. Finally, because the pre- 
and post-disaster images were sometimes captured at different times of the day, in different 
seasons, or simply under different lighting conditions, we performed histogram matching to ensure 
that such difference did not negatively impact model performance.  
 
We then applied the algorithm to the resulting pre- and post-images. Unlike the xView2 testing 
set, which was used to determine the winning entry, these images were not part of the original 
xBD dataset and thus exhibited some systematic differences that could deteriorate model 
performance. The model thus required re-training to handle a wider variety of image types (e.g., 
different color balance), which was achieved by generating several systematically altered versions 
of the xBD dataset. After damage classification was completely, we used Microsoft’s US Building 
Footprint database to identify buildings more accurately. In rare cases where the algorithm 
incorrectly labeled a single building as multiple buildings and assigned them different damage 
levels, we used their average as the damage level. Our final database thus contains some non-
integer damage values. 
 
Our main method of validating the results of our application of the algorithm was to test for the 
presence of outliers in the resulting dataset. Intuitively, hurricane damage should be spatially 
continuous, and cases where nearby buildings experience very different damage levels should 
be rare. To check for such outliers, we drew 1000 buildings at random for each hurricane. For 
every building, we created a rectangle around it with a diagonal length of 1 km. We then identified 
all other buildings in this area and calculated the interquartile range (IQR) of damage. We defined 
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an outlier as a building whose damage differed from the IQR by more than 1. Based on this 
definition, the outlier rate was negligible, indicating that the algorithm performed relatively well in 
this sample. 

Results 
Summary statistics 
 
Table 1 shows the characteristics of the resulting damage dataset, which includes nearly 1.7 
million buildings. Most of them (75.4%) are located in areas impacted by Hurricane Harvey, which 
made landfall in a large and densely populated metropolitan area (Houston, Texas). There is 
substantial heterogeneity in damage both within and across hurricanes. For example, very few 
buildings are completely untouched (damage level 0) or completely destroyed (damage level 3), 
except in the cases of Hurricanes Ida and Harvey, where 19 and 15 percent of buildings 
experienced no damage, respectively. For all but one hurricane, the “minor damage” (level 1) 
category is the most common, with about 70-80 percent of all buildings classified as experiencing 
minor damage. For Hurricane Laura, however, less than one-third of buildings fall into this 
category, whereas about two-thirds fall into the “major damage” (damage level 2) category. Low 
rates of zero damage are not surprising, as the Maxar disaster imagery deliberately selects areas 
with substantial damage levels. By contrast, low rates of complete building destruction indicates 
that the US building stock is relatively resilient to most hurricanes. 

 

 
Note: The table reports damage summary statistics for six hurricanes that made 
landfall in the US. Cases where damage values are non-integers are counted in 
the lower damage category.  

 

0 1 2 3

Harvey  Aug-17 1,272,181 15.35 72.20 8.03 4.43

Florence Sep-18 231,865 1.41 82.25 12.86 3.48

Michael  Oct-18 39,670 2.59 72.67 18.90 5.84

Laura  Aug-20 4,641 0.13 31.14 65.31 3.43

Ida    Sep-21 134,049 18.81 78.97 2.01 0.21

Oct-20

Hurricane 
name

Date of 
impact

No. of 
buildings

Distribution of damage (% of buildings)

Table 1: basic characteristics of damage dataset

Delta 3.12 82.73 12.92 1.235,455
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Next, we demonstrate the richness of the dataset with damage heatmaps for each of the six 
hurricanes available in the Maxar dataset. We rescale the damage categories so that the lowest 
value is 1 and the highest value is 4. Light blues are used to indicate the lowest damage levels, 
followed by darker blue and light orange. Bright red corresponds to the highest damage levels. 
Note that the exact appearance of the heatmaps depends on the zoom level, as the mapping 
algorithm smoothes individual points for legibility, and the amount of smoothing increases with 
the zoom level. The maps should thus not be viewed as exact representations of the underlying 
data but rather as illustrating the general damage patterns.  
 
Hurricane Harvey  
 

Hurricane Harvey was a Category 4 
hurricane that made landfall in Texas in 
August 2017, causing widespread 
devastation and historic flooding in multiple 
areas along the Gulf Coast. However, 
Maxar only provides appropriate satellite 
imagery for the Houston Metropolitan Area 
(Figure 1). Although some hot spots are 
apparent (e.g., Sugar Land and its 
surroundings), damage is fairly event 
distributed throughout the area. Such 
spatially granular data could be useful for a 
variety of applications. For example, 
researchers could correlate damage with 
building-level characteristics within 
neighborhood, comparing damage to 
homes located in the same area but 
differing in some observable trait. A key 
application we will be pursuing going 
forward is linking these data to individual-
level longitudinal data that contain address 

information (e.g., confidential tax records) or 9-digit zip code (e.g., confidential Medicare 
administrative data). Doing so will allow for novel insights, such as separating the effect of direct 
damage to one’s home from being in or near a damaged neighborhood. Preliminary analyses 
linked to longitudinal data on individual locations (the Infutor dataset) have already yielded 
surprising results: not only did Hurricane Harvey not lead to widespread outmigration from the 
Houston Metropolitan area (a fact that is apparent in aggregate data and does not require detailed 
damage information), but individuals whose homes were destroyed were not more likely to 
relocate than individuals living in the same area whose homes were unharmed. This 
counterintuitive finding suggests that the context in which a disaster occurs—including the 
economic prosperity of the area, insurance coverage, and the government response—matter 
greatly for individual decisions in the aftermath of an extreme event. Future research will probe 
these hypotheses. 
 

Figure 1. Damage map of Hurricane Harvey (August 2017) 
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Hurricane Florence 
 

Figures 2a-2d show damage heatmaps for Hurricane Florence, a Category 4 hurricane that made 
an impact in the southeastern 
United States in September 
2018. The storm caused 
significant damage and 
disruption in North and South 
Carolina, particularly in low-lying 
areas and communities near 
rivers and streams. Thousands 
of people were displaced from 
their homes, seeking shelter in 
evacuation centers. Maxar 
provides Hurricane Florence 
satellite imagery for three 
coastal areas: the North 
Charleston area, the Myrtle 
Beach area, and the Cape Fear 
River Basin. Figure 2a shows 
the general locations of these 
areas.  
 

 
While North Charleston, South Carolina, 
did not experience the most severe 
impacts of Hurricane Florence in 2018, 
the city and the broader Charleston 
metropolitan area were still affected by 
the storm's outer bands and associated 
weather conditions (Figure 2b). The city 
did experience localized flooding in low-
lying areas and some wind-related 
damage, including fallen trees and 
power outages. The impacts were 
relatively milder compared to areas 
closer to the storm's landfall, however. 
The majority of the homes experienced 
damage levels between two and three, 
but there are neighborhoods where 
damage levels average closer to four. 
However, the most intense impacts 
were concentrated farther north. 
 
 

Figure 2a. Areas most impacted by Hurricane Florence (September 
2018) 

Figure 2b. Impact of Hurricane Florence in the North 
Charleston area 
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Hurricane Florence had significant impacts 
on the Myrtle Beach area, located along the 
coast of South Carolina. While the city itself 
did not experience the most severe effects 
of the storm, it still faced a range of 
challenges due to the storm's heavy rainfall, 
strong winds, and potential for storm surge 
(Figure 2c). While the center of Hurricane 
Florence made landfall farther north in North 
Carolina, the storm's outer bands brought 
heavy rainfall to the Myrtle Beach area. The 
prolonged rainfall led to localized flooding in 
some parts of the city and surrounding 
communities. The rainfall also contributed to 
rising water levels in rivers and creeks. 
However, the general damage levels are 
noticeably lower than in Figure 2b, with most 
homes experiencing damage of less than 
three and only a few hotspots with high 
damage levels. 
 
 

The Cape Fear River Basin in North 
Carolina was one of the areas that 
experienced significant impacts from 
Hurricane Florence. The slow-
moving nature of the storm, coupled 
with its heavy rainfall, led to 
catastrophic flooding in this region 
(Figure 2d). Rivers and tributaries 
within the basin, including the Cape 
Fear River itself, swelled well 
beyond their banks, inundating 
homes, businesses, roads, and 
agricultural fields. The slow-moving 
nature of the storm caught some 
residents off guard, and emergency 
responders had to conduct 

numerous water rescues as floodwaters rapidly rose. Roads, bridges, and transportation networks 
were washed out or compromised by the floodwaters. This hindered both rescue and recovery 
efforts, making it difficult for authorities to access and provide aid to affected areas. 
 
 

Figure 2c. Impact of Hurricane Florence in the Myrtle 
Beach area 

Figure 2d. Impact of Hurricane Florence in the Cape Fear River 
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Hurricane Michael 
 

Hurricane Michael was a Category 5 hurricane which made landfall on the Florida Panhandle and 
then moved into Georgia in October 2018. 
Unfortunately, damage imagery from Maxar was 
only available for three Florida coastal areas 
impacted by the storm, shown in Figure 3a. These 
communities, including Mexico Beach, Panama 
City, and several other smaller communities, 
experienced the brunt of Hurricane Michael's 
impact. The storm brought destructive winds, 
storm surge, and heavy rainfall, resulting in 
widespread devastation. Many structures were 
destroyed, including homes, businesses, and 
public infrastructure. The communities in this 
region faced significant challenges in terms of 
power outages, water and sewage disruptions, 
and limited access to essential services.  
 
 
 
 
 
 
 

 
The Panama City area was one of the 
hardest-hit regions by the storm (Figure 
3b). The storm brought sustained winds of 
up to 155 mph (250 km/h) at landfall, 
causing widespread destruction in its path. 
The Panama City area experienced 
extremely strong winds that tore apart 
buildings, uprooted trees, and caused 
extensive damage to infrastructure. 
Homes, businesses, and other buildings 
suffered varying degrees of damage, with 
many structures being severely damaged 
or destroyed. The storm's impact was 
particularly evident in beachfront and 
coastal areas. 
 
 

 

Figure 3a. Areas most impacted by Hurricane 
Michael (October 2018) 

Figure 3b. Impact of Hurricane Michael in the Panama City 
area 
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Likewise, Hurricane Michael had 
devastating effects on the Mexico Beach 
area, located along the Florida Panhandle. 
The storm's intense winds, storm surge, and 
destructive force left a lasting impact on this 
coastal community. Extreme winds 
demolished buildings, leveled homes, 
snapped trees, and left widespread debris in 
their wake. The storm surge, which reached 
over 15 feet in some areas, inundated 
coastal communities, causing flooding and 
washing away structures close to the shore. 
Debris was scattered across the landscape, 
making travel and recovery efforts 
challenging. 
 
 
 

 
Hurricane Michael also had significant impacts on the Port 
Saint Joe and Highland View areas (Figure 3d). The 
strong winds associated with Hurricane Michael caused 
significant structural damage in the Port Saint Joe and 
Highland View areas. Homes, businesses, and other 
buildings were damaged or destroyed by the storm's 
impact. The storm surge from Hurricane Michael, 
combined with the astronomical high tide, led to coastal 
flooding in these areas. The surge, which reached several 
feet in some places, inundated coastal neighborhoods, 
causing flooding and contributing to the destruction of 
buildings near the shoreline. The destruction of 
businesses and infrastructure disrupted local economies, 
and the communities had to address the long-term effects 
on employment and commerce. 
 
 
 
 
 
 
 
 
 
 

Figure 3c. Impact of Hurricane Michael in the Mexico 
Beach area 

Figure 3d. Impact of Hurricane Michael 
in Port Saint Joe/Highland View 
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Hurricane Laura 
 

Figure 4 shows the damage heatmap of Hurricane Laura, a Category 4 hurricane that made 
landfall in southwest Louisiana 
and southeast Texas in August 
2020. Unfortunately, Maxar 
damage imagery is only 
available for an area in 
Calcasieu Parish, Louisiana. 
This area was one of the areas 
severely impacted by the storm. 
Hurricane Laura brought 
destructive winds with 
sustained speeds of up to 150 
mph (240 km/h) at landfall. The 
strong winds caused extensive 
damage to buildings, 
infrastructure, and trees 

throughout Calcasieu Parish. Many homes and businesses suffered varying degrees of damage, 
from roof and siding loss to structural collapse. 
 
Hurricane Delta 
 

Figure 5 shows the damage map for Hurricane Delta, a Category 2 hurricane that made landfall 
in southwestern Louisiana in October 2020. 
The storm brought strong winds, heavy 
rainfall, and storm surge, resulting in 
widespread damage to homes, businesses, 
and infrastructure. Many areas had already 
been affected by Hurricane Laura just a few 
weeks earlier, and Hurricane Delta 
compounded the damage. Structures that 
were weakened or damaged by Laura were 
further compromised by Delta's winds, 
leading to additional destruction. Maxar 
provides damage imagery for Erath and 
Delcambre areas of Louisiana. While 
Hurricane Delta was not as powerful as some 
other recent hurricanes, it still had significant 
impacts on these coastal communities, with 
the potential to cause damage to structures, 
uproot trees, and knock down power lines. 
 
 
 

Figure 4. Damage map of Hurricane Laura (August 2020) 

Figure 5. Damage map of Hurricane Delta (October 2020) 
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Hurricane Ida 
 

Hurricane Ida was a Category 4 hurricane that made impact along the Gulf Coast in late August 
2021. Maxar provides damage imagery for 
the Greater New Orleans area. This region, 
including New Orleans and surrounding 
parishes, experienced significant impacts 
from the storm. The hurricane brought 
strong winds, heavy rainfall, and storm 
surge, resulting in widespread power 
outages, structural damage to buildings, 
and extensive flooding. Roofs were torn off 
structures, windows shattered, and signs 
were blown away. The storm surge from 
Hurricane Ida led to coastal flooding in parts 
of the New Orleans area, including low-
lying neighborhoods and areas adjacent to 
bodies of water. The surge inundated 
roads, homes, and businesses, contributing 
to the destruction and making evacuation 
difficult in some areas. Many communities 
in this area faced challenges with 
infrastructure damage, including the loss of 
critical services such as electricity and 
water.  
 
 

Limitations  
Obtaining the required satellite imagery proved more challenging than expected, ultimately 
yielding a smaller sample of extreme events than desired. Locating appropriate pre- and post-
disaster imagery is time-intensive, partly because narrative descriptions of impacted areas are 
often imprecise. It also requires substantial geoprocessing skills, and it was unfortunately difficult 
to recruit and retain appropriate personnel. Systematic collection and publication of satellite data 
have greatly expanded in recent years, however, promising greater data availability in the future 
but providing limited ability to obtain and process data for earlier extreme events.  

Conclusion 

The escalating impact of natural catastrophes resulting from factors such as increased population 
exposure, economic growth, and climate change highlights the urgency of understanding their 
effects and devising effective mitigation strategies. However, the imprecision of current damage 
estimates hinders comprehensive analyses and informed decision-making. This limitation is 
compounded by the scarcity of geographically granular damage data and the lack of access to 

Figure 6. Damage map of Hurricane Ida (August 2021) 
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building-level claim information. The existing gap in knowledge regarding the individual-level 
impact of disasters remains a significant hurdle in devising targeted responses. 
 
We present a promising solution to this problem that employs computer vision techniques to 
create a detailed spatial database of building-level damage for six major US hurricanes. Efforts 
such as these hold the potential to catalyze a new era of research aimed at understanding the 
intricate dynamics of natural catastrophe impacts. As natural disasters continue to pose significant 
challenges to communities and economies, the availability of such data-driven insights is 
invaluable in steering efforts toward more resilient and sustainable outcomes. 
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