1 Functions, Graphs, and Equations

- 1. For each of the following functions, plot enough points to sketch a complete graph. Describe where the function is increasing and where it is decreasing. Find the local maxima and minima:
 - (a) y = 3x 2;
 - (b) $y = x^2 + 1;$
 - (c) $y = x^3 x;$
 - (d) y = |x|;
- 2. Find the equation for the linear function whose graph:
 - (a) has slope 2 and y-intercept (0, 3),
 - (b) has slope -3 and y-intercept (0, 0),
 - (c) has slope 4 and goes through the point (1, 1),
 - (d) goes through the points (2, 3) and (4, 5),
 - (e) goes through the points (2, -4), and (0, 3).
- 3. Suppose F(q) is the revenue generated from producing q units of output. Give an economic interpretation for the *slope* of F(q).
- 4. Solve the following systems of equations:
 - (a)

```
3x + 3y = 4x - y = 10
```

(b)

$$4x + 2y - 3z = 16x + 3y - 5z = 0x + y + 2z = 9.$$

- 5. Consider a matrix with n rows and m columns, with each element of the matrix being denoted by a_{ij} where i corresponds to row i and j corresponds to row j. Use summation notation to write an expression for the following:
 - (a) The sum of all matrix elements;
 - (b) The sum of the diagonal elements;
 - (c) The sum of the elements in the i^{th} row.

2 Exponents and Logarithms

1. Solve the following equations for x:

(a)
$$2e^{6x} = 24$$

- (b) $e^{x^2} = 1;$
- (c) $2^x = e^7;$
- (d) $\ln x^2 = 10;$
- (e) $\ln x^{1/2} = \ln 20$.
- 2. How quickly will \$1000 grow to \$1200 if the interest rate is 5 percent compounded continuously?
- 3. Derive a formula for the amount of time that it takes for money to triple in a bank account that pays interest at rate r compounded continuously.

3 Calculus

- 1. Find the derivative with respect to x of the following functions:
 - (a) $-9x^4$; (b) $\frac{1}{2}\sqrt{x}$; (c) $3x^2 - 5x + 2x^{\frac{1}{2}} - 9$; (d) $\frac{x}{x^{2+1}}$; (e) $(x+2)^2(4x^2+1)^3$; (f) e^{3x} ; (g) $\ln x^2$.
- 2. Compute the second derivatives of the functions in problem 1.
- 3. Consider the function $f(x) = x^2 + 2$. Find the equation of the tangent line to the graph of f(x) at x = 3.
- 4. Use the first order condition to find the minimum of the function $f(x) = (x 4)^2 + x$. Use the second order condition to verify that this is indeed a minimum.
- 5. Consider the function $f(x) = 2x^3 45x^2 + 300x + 500$. Find the maximum and minimum of f(x) in the interval [0, 20].
- 6. Compute all the first and second partial derivatives (including cross-partial derivatives) of the following functions:
 - (a) $4x^2y 3xy^3 + 6x;$
 - (b) xy^2 ;

(c) e^{2x+3y} .

7. Use a Taylor polynomial of order 3 to approximate e^x at the point x = 0.

4 Probability

- 1. Consider a large box filled with 75 balls of equal size and weight. 20 of the balls are blue, 35 are red, 12 are black, and the remaining balls are yellow.
 - (a) If you are sampling with replacement, what is the probability that the first two balls you select are both blue. What is the probability that they are both yellow?
 - (b) Repeat the previous question in the case in which you are sampling without replacement.
 - (c) If you are sampling without replacement, what is the probability that the first two balls you select are the same color?
- 2. Suppose that the scores of an IQ test for all residents of Champaign are uniformly distributed with a minimum of 50 and a maximum of 200.
 - (a) If you select someone at random from the population, what is the probability that their IQ score is less than 95?
 - (b) What is the probability of selecting someone with an IQ score somewhere between 170 and 190?